3,432 research outputs found
Theory of collision effects on line shapes using a quantum mechanical description of the atomic center of mass motion - Application to lasers
Quantum mechanical treatment of atomic center of mass motion in theory of collision effects on line shape
Turbulence measurements using the laser Doppler velocimeter
The photomultiplier signal representing the axial velocity of water within a glass pipe is examined. It is shown that with proper analysis of the photomultiplier signal, the turbulent information that can be obtained in liquid flows is equivalent to recent hot film studies. In shear flows the signal from the laser Doppler velocimeter contains additional information which may be related to the average shear
An evaluation of a constrained test method for obtaining free body responses
A method for obtaining free body responses from dynamic tests on a constrained structure is investigated for practical feasibility. The method is based on the principle that a constrained structure can be considered to be a free body acted upon by multiple forces which include the forces of constraint. By measuring these forces and by exciting the structure so as to develop linearly independent sets of forces, the response of the free body to one force at a time can be computed. Techniques for producing these independent forces are discussed. The development of the theory, computer simulations of tests of representative aerospace vehicles (including experimental error), and a description and listing of the computer programs developed are included. The procedure appears to be a practical method for obtaining in-flight characteristics of such vehicles
Operational application of a universal turbulence measuring system Final report
Aeronautical turbulence measuring apparatus - gust loadin
On the Riemann Tensor in Double Field Theory
Double field theory provides T-duality covariant generalized tensors that are
natural extensions of the scalar and Ricci curvatures of Riemannian geometry.
We search for a similar extension of the Riemann curvature tensor by developing
a geometry based on the generalized metric and the dilaton. We find a duality
covariant Riemann tensor whose contractions give the Ricci and scalar
curvatures, but that is not fully determined in terms of the physical fields.
This suggests that \alpha' corrections to the effective action require \alpha'
corrections to T-duality transformations and/or generalized diffeomorphisms.
Further evidence to this effect is found by an additional computation that
shows that there is no T-duality invariant four-derivative object built from
the generalized metric and the dilaton that reduces to the square of the
Riemann tensor.Comment: 36 pages, v2: minor changes, ref. added, v3: appendix on frame
formalism added, version to appear in JHE
A Double Sigma Model for Double Field Theory
We define a sigma model with doubled target space and calculate its
background field equations. These coincide with generalised metric equation of
motion of double field theory, thus the double field theory is the effective
field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match
published version - background and detail of calculations substantially
condensed, motivation expanded, refs added, results unchange
P-Selectivity, Immunity, and the Power of One Bit
We prove that P-sel, the class of all P-selective sets, is EXP-immune, but is
not EXP/1-immune. That is, we prove that some infinite P-selective set has no
infinite EXP-time subset, but we also prove that every infinite P-selective set
has some infinite subset in EXP/1. Informally put, the immunity of P-sel is so
fragile that it is pierced by a single bit of information.
The above claims follow from broader results that we obtain about the
immunity of the P-selective sets. In particular, we prove that for every
recursive function f, P-sel is DTIME(f)-immune. Yet we also prove that P-sel is
not \Pi_2^p/1-immune
Molecular Gas in Spiral Galaxies
In this review, I highlight a number of recent surveys of molecular gas in
nearby spiral galaxies. Through such surveys, more complete observations of the
distribution and kinematics of molecular gas have become available for galaxies
with a wider range of properties (e.g., brightness, Hubble type, strength of
spiral or bar structure). These studies show the promise of both
interferometers and single-dish telescopes in advancing our general
understanding of molecular gas in spiral galaxies. In particular, I highlight
the contributions of the recent BIMA Survey of Nearby Galaxies (SONG).Comment: 8 pages, 1 figure. To appear in the proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium, "The Dense Interstellar Medium in Galaxies",
which was held in Zermatt, Switzerland in September 200
A real-time proximity querying algorithm for haptic-based molecular docking
Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to their binding pose. Moreover, it allows human perception, intuition and knowledge to assist and accelerate the docking process, and reduces incorrect binding poses. Crucial for interactive docking is the real-time calculation of interaction forces. For smooth and accurate haptic exploration and manipulation, force-feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations must be performed within 1ms. To achieve this, modern haptic-based docking approaches often utilize pre-computed force grids and linear interpolation. However, such grids are time-consuming to pre-compute (especially for large molecules), memory hungry, can induce rough force transitions at cell boundaries and cannot be applied to flexible docking. Here we propose an efficient proximity querying method for computing intermolecular forces in real time. Our motivation is the eventual development of a haptic-based docking solution that can model molecular flexibility. Uniquely in a haptics application we use octrees to decompose the 3D search space in order to identify the set of interacting atoms within a cut-off distance. Force calculations are then performed on this set in real time. The implementation constructs the trees dynamically, and computes the interaction forces of large molecular structures (i.e. consisting of thousands of atoms) within haptic refresh rates. We have implemented this method in an immersive, haptic-based, rigid-body, molecular docking application called Haptimol_RD. The user can use the haptic device to orientate the molecules in space, sense the interaction forces on the device, and guide the molecules to their binding pose. Haptimol_RD is designed to run on consumer level hardware, i.e. there is no need for specialized/proprietary hardware
Molecular dynamics study of accelerated ion-induced shock waves in biological media
We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model
- …
