234 research outputs found

    On the Riemann Tensor in Double Field Theory

    Get PDF
    Double field theory provides T-duality covariant generalized tensors that are natural extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for a similar extension of the Riemann curvature tensor by developing a geometry based on the generalized metric and the dilaton. We find a duality covariant Riemann tensor whose contractions give the Ricci and scalar curvatures, but that is not fully determined in terms of the physical fields. This suggests that \alpha' corrections to the effective action require \alpha' corrections to T-duality transformations and/or generalized diffeomorphisms. Further evidence to this effect is found by an additional computation that shows that there is no T-duality invariant four-derivative object built from the generalized metric and the dilaton that reduces to the square of the Riemann tensor.Comment: 36 pages, v2: minor changes, ref. added, v3: appendix on frame formalism added, version to appear in JHE

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf

    A Double Sigma Model for Double Field Theory

    Full text link
    We define a sigma model with doubled target space and calculate its background field equations. These coincide with generalised metric equation of motion of double field theory, thus the double field theory is the effective field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match published version - background and detail of calculations substantially condensed, motivation expanded, refs added, results unchange

    Massive Type II in Double Field Theory

    Full text link
    We provide an extension of the recently constructed double field theory formulation of the low-energy limits of type II strings, in which the RR fields can depend simultaneously on the 10-dimensional space-time coordinates and linearly on the dual winding coordinates. For the special case that only the RR one-form of type IIA carries such a dependence, we obtain the massive deformation of type IIA supergravity due to Romans. For T-dual configurations we obtain a `massive' but non-covariant formulation of type IIB, in which the 10-dimensional diffeomorphism symmetry is deformed by the mass parameter.Comment: 21 page

    Reconstructing the reproductive mode of an Ediacaran macro-organism.

    Get PDF
    Enigmatic macrofossils of late Ediacaran age (580-541 million years ago) provide the oldest known record of diverse complex organisms on Earth, lying between the microbially dominated ecosystems of the Proterozoic and the Cambrian emergence of the modern biosphere. Among the oldest and most enigmatic of these macrofossils are the Rangeomorpha, a group characterized by modular, self-similar branching and a sessile benthic habit. Localized occurrences of large in situ fossilized rangeomorph populations allow fundamental aspects of their biology to be resolved using spatial point process techniques. Here we use such techniques to identify recurrent clustering patterns in the rangeomorph Fractofusus, revealing a complex life history of multigenerational, stolon-like asexual reproduction, interspersed with dispersal by waterborne propagules. Ecologically, such a habit would have allowed both for the rapid colonization of a localized area and for transport to new, previously uncolonized areas. The capacity of Fractofusus to derive adult morphology by two distinct reproductive modes documents the sophistication of its underlying developmental biology.This work has been supported by the Natural Environment Research Council [grant numbers NE/I005927/1 to C.G.K., NE/J5000045/1 to J.J.M., NE/L011409/1 to A.G.L. and NE/G523539/1 to E.G.M.], and a Henslow Junior Research Fellowship from Cambridge Philosophical Society to A.G.L.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature1464

    Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine

    Get PDF
    Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation

    N=1 Supersymmetric Double Field Theory

    Full text link
    We construct the N=1 supersymmetric extension of double field theory for D=10, including the coupling to an arbitrary number n of abelian vector multiplets. This theory features a local O(1,9+n) x O(1,9) tangent space symmetry under which the fermions transform. It is shown that the supersymmetry transformations close into the generalized diffeomorphisms of double field theory.Comment: 22 pages, v2: minor corrections, ref. added, to appear in JHE

    Large Gauge Transformations in Double Field Theory

    Get PDF
    Finite gauge transformations in double field theory can be defined by the exponential of generalized Lie derivatives. We interpret these transformations as `generalized coordinate transformations' in the doubled space by proposing and testing a formula that writes large transformations in terms of derivatives of the coordinate maps. Successive generalized coordinate transformations give a generalized coordinate transformation that differs from the direct composition of the original two. Instead, it is constructed using the Courant bracket. These transformations form a group when acting on fields but, intriguingly, do not associate when acting on coordinates.Comment: 40 pages, v2: discussion of dilaton added, to appear in JHE
    corecore