615 research outputs found

    Dynamical fidelity of a solid-state quantum computation

    Full text link
    In this paper we analyze the dynamics in a spin-model of quantum computer. Main attention is paid to the dynamical fidelity (associated with dynamical errors) of an algorithm that allows to create an entangled state for remote qubits. We show that in the regime of selective resonant excitations of qubits there is no any danger of quantum chaos. Moreover, in this regime a modified perturbation theory gives an adequate description of the dynamics of the system. Our approach allows to explicitly describe all peculiarities of the evolution of the system under time-dependent pulses corresponding to a quantum protocol. Specifically, we analyze, both analytically and numerically, how the fidelity decreases in dependence on the model parameters.Comment: 9 pages, 6 figures, submitted to PR

    Breakdown of Universality in Quantum Chaotic Transport: the Two-Phase Dynamical Fluid Model

    Full text link
    We investigate the transport properties of open quantum chaotic systems in the semiclassical limit. We show how the transmission spectrum, the conductance fluctuations, and their correlations are influenced by the underlying chaotic classical dynamics, and result from the separation of the quantum phase space into a stochastic and a deterministic phase. Consequently, sample-to-sample conductance fluctuations lose their universality, while the persistence of a finite stochastic phase protects the universality of conductance fluctuations under variation of a quantum parameter.Comment: 4 pages, 3 figures in .eps format; final version to appear in Physical Review Letter

    Ehrenfest times for classically chaotic systems

    Get PDF
    We describe the quantum mechanical spreading of a Gaussian wave packet by means of the semiclassical WKB approximation of Berry and Balazs. We find that the time scale τ\tau on which this approximation breaks down in a chaotic system is larger than the Ehrenfest times considered previously. In one dimension \tau=\fr{7}{6}\lambda^{-1}\ln(A/\hbar), with λ\lambda the Lyapunov exponent and AA a typical classical action.Comment: 4 page

    Decay of the classical Loschmidt echo in integrable systems

    Full text link
    We study both analytically and numerically the decay of fidelity of classical motion for integrable systems. We find that the decay can exhibit two qualitatively different behaviors, namely an algebraic decay, that is due to the perturbation of the shape of the tori, or a ballistic decay, that is associated with perturbing the frequencies of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.Comment: 8 pages, 3 figures, revte

    Fractional plateaus in the Coulomb blockade of coupled quantum dots

    Full text link
    Ground-state properties of a double-large-dot sample connected to a reservoir via a single-mode point contact are investigated. When the interdot transmission is perfect and the dots controlled by the same dimensionless gate voltage, we find that for any finite backscattering from the barrier between the lead and the left dot, the average dot charge exhibits a Coulomb-staircase behavior with steps of size e/2 and the capacitance peak period is halved. The interdot electrostatic coupling here is weak. For strong tunneling between the left dot and the lead, we report a conspicuous intermediate phase in which the fractional plateaus get substantially altered by an increasing slope.Comment: 6 pages, 4 figures, final versio

    Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2

    Full text link
    We have performed low-temperature specific heat CC and thermal conductivity κ\kappa measurements on the Ni-pnictide superconductors BaNi2_2As2_2 (TcT_\mathrm{c}=0.7 K and SrNi2_2P2_2 (TcT_\mathrm{c}=1.4 K). The temperature dependences C(T)C(T) and κ(T)\kappa(T) of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual κ\kappa for BaNi2_2As2_2 rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba0.6_{0.6}La0.4_{0.4}Ni2_2As2_2 shows a mild suppression of TcT_\mathrm{c} and Hc2H_\mathrm{c2} relative to BaNi2_2As2_2.Comment: 5 pages, 3 figures, to be published in J. Phys.: Conf. Se

    Zeeman smearing of the Coulomb blockade

    Full text link
    Charge fluctuations of a large quantum dot coupled to a two-dimensional lead via a single-mode good Quantum Point Contact (QPC) and capacitively coupled to a back-gate, are investigated in the presence of a parallel magnetic field. The Zeeman term induces an asymmetry between transmission probabilities for the spin-up and spin-down channels at the QPC, producing noticeable effects on the quantization of the grain charge already at low magnetic fields. Performing a quantitative analysis, I show that the capacitance between the gate and the lead exhibits - instead of a logarithmic singularity - a reduced peak as a function of gate voltage. Experimental applicability is discussed.Comment: 5 pages, 3 figures (Final version

    Universality of the Lyapunov regime for the Loschmidt echo

    Full text link
    The Loschmidt echo (LE) is a magnitude that measures the sensitivity of quantum dynamics to perturbations in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory, supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of the Fermi wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity with respect to the form of the perturbation and the behavior of individual (non-averaged) initial conditions. Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish between classical and quantum origin for the different terms of the LE. This approach renders an understanding for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex

    Identification of target-specific bioisosteric fragments from ligand-protein crystallographic data

    Get PDF
    Bioisosteres are functional groups or atoms that are structurally different but that can form similar intermolecular interactions. Potential bioisosteres were identified here from analysing the X-ray crystallographic structures for sets of different ligands complexed with a fixed protein. The protein was used to align the ligands with each other, and then pairs of ligands compared to identify substructural features with high volume overlap that occurred in approximately the same region of geometric space. The resulting pairs of substructural features can suggest potential bioisosteric replacements for use in lead-optimisation studies. Experiments with 12 sets of ligand-protein complexes from the Protein Data Bank demonstrate the effectiveness of the procedure

    Universal Resistances of the Quantum RC circuit

    Full text link
    We examine the concept of universal quantized resistance in the AC regime through the fully coherent quantum RC circuit comprising a cavity (dot) capacitively coupled to a gate and connected via a single spin-polarized channel to a reservoir lead. As a result of quantum effects such as the Coulomb interaction in the cavity and global phase coherence, we show that the charge relaxation resistance RqR_q is identical for weak and large transmissions and it changes from h/2e2h/2e^2 to h/e2h/e^2 when the frequency (times \hbar) exceeds the level spacing of the cavity; hh is the Planck constant and ee the electron charge. For large cavities, we formulate a correspondence between the charge relaxation resistance h/e2h/e^2 and the Korringa-Shiba relation of the Kondo model. Furthermore, we introduce a general class of models, for which the charge relaxation resistance is universal. Our results emphasize that the charge relaxation resistance is a key observable to understand the dynamics of strongly correlated systems.Comment: 12 pages, 3 figure
    corecore