72 research outputs found

    Auditory time-frequency masking: psychoacoustical data and application to audio representations

    No full text
    International audienceIn this paper, the results of psychoacoustical experiments on auditory time-frequency (TF) masking using stimuli (masker and target) with maximal concentration in the TF plane are presented. The target was shifted either along the time axis, the frequency axis, or both relative to the masker. The results show that a simple superposition of spectral and temporal masking functions does not provide an accurate representa- tion of the measured TF masking function. This confirms the inaccuracy of simple models of TF masking currently implemented in some percep- tual audio codecs. In the context of audio signal processing, the present results constitute a crucial basis for the prediction of auditory masking in the TF representations of sounds. An algorithm that removes the in- audible components in the wavelet transform of a sound while causing no audible difference to the original sound after re-synthesis is proposed. Preliminary results are promising, although further development is re- quired

    Evidence for proactive and retroactive temporal pattern analysis in simultaneous maskinga)

    Get PDF
    Amplitude modulation (AM) of a masker reduces its masking on a simultaneously presented unmodulated pure-tone target, which likely involves dip listening. This study tested the idea that dip-listening efficiency may depend on stimulus context, i.e., the match in AM peakedness (AMP) between the masker and a precursor or postcursor stimulus, assuming a form of temporal pattern analysis process. Masked thresholds were measured in normal-hearing listeners using Schroeder-phase harmonic complexes as maskers and precursors or postcursors. Experiment 1 showed threshold elevation (i.e., interference) when a flat cursor preceded or followed a peaked masker, suggesting proactive and retroactive temporal pattern analysis. Threshold decline (facilitation) was observed when the masker AMP was matched to the precursor, irrespective of stimulus AMP, suggesting only proactive processing. Subsequent experiments showed that both interference and facilitation (1) remained robust when a temporal gap was inserted between masker and cursor, (2) disappeared when an F0-difference was introduced between masker and precursor, and (3) decreased when the presentation level was reduced. These results suggest an important role of envelope regularity in dip listening, especially when masker and cursor are F0-matched and, therefore, form one perceptual stream. The reported effects seem to represent a time-domain variant of comodulation masking release.</p

    Neural basis of improved ITD sensitivity with jitter

    Full text link

    Binaural-cue Weighting and Training-Induced Reweighting Across Frequencies

    No full text
    During sound lateralization, the information provided by interaural differences in time (ITD) and level (ILD) is weighted, with ITDs and ILDs dominating for low and high frequencies, respectively. For mid frequencies, the weighting between these binaural cues can be changed via training. The present study investigated whether binaural-cue weights change gradually with increasing frequency region, whether they can be changed in various frequency regions, and whether such binaural-cue reweighting generalizes to untrained frequencies. In two experiments, a total of 39 participants lateralized 500-ms, 1/3-octave-wide noise bursts containing various ITD/ILD combinations in a virtual audio-visual environment. Binaural-cue weights were measured before and after a 2-session training in which, depending on the group, either ITDs or ILDs were visually reinforced. In experiment 1, four frequency bands (centered at 1000, 1587, 2520, and 4000 Hz) and a multiband stimulus comprising all four bands were presented during weight measurements. During training, only the 1000-, 2520-, and 4000-Hz bands were presented. In experiment 2, the weight measurements only included the two mid-frequency bands, while the training only included the 1587-Hz band. ILD weights increased gradually from low- to high-frequency bands. When ILDs were reinforced during training, they increased for the 4000- (experiment 1) and 2520-Hz band (experiment 2). When ITDs were reinforced, ITD weights increased only for the 1587-Hz band (at specific azimuths). This suggests that ILD reweighting requires high, and ITD reweighting requires low frequencies without including frequency regions providing fine-structure ITD cues. The changes in binaural-cue weights were independent of the trained bands, suggesting some generalization of binaural-cue reweighting. </jats:p
    corecore