356 research outputs found
Multi-Scale Characterization of Lyotropic Liquid Crystals Using 2H and Diffusion MRI with Spatial Resolution in Three Dimensions
The ability of lyotropic liquid crystals to form intricate structures on a range of length scales can be utilized for the synthesis of structurally complex inorganic materials, as well as in devices for controlled drug delivery. Here we employ magnetic resonance imaging (MRI) for non-invasive characterization of nano-, micro-, and millimeter scale structures in liquid crystals. The structure is mirrored in the translational and rotational motion of the water, which we assess by measuring spatially resolved self-diffusion tensors and spectra. Our approach differs from previous works in that the MRI parameters are mapped with spatial resolution in all three dimensions, thus allowing for detailed studies of liquid crystals with complex millimeter-scale morphologies that are stable on the measurement time-scale of 10 hours. The data conveys information on the nanometer-scale structure of the liquid crystalline phase, while the combination of diffusion and data permits an estimate of the orientational distribution of micrometer-scale anisotropic domains. We study lamellar phases consisting of the nonionic surfactant C10E3 in O, and follow their structural equilibration after a temperature jump and the cessation of shear. Our experimental approach may be useful for detailed characterization of liquid crystalline materials with structures on multiple length scales, as well as for studying the mechanisms of phase transitions
On the interference of urea with CO2/CO32- chemistry of cellulose model solutions in NaOH(aq)
The CO2/CO32− chemistry of the cellulose/NaOH(aq) solutions has been recently reported to comprise a CO2 incorporation through formation of a transient cellulose carbonate intermediate along with cellulose – CO32− interactions. This work explores on molecular interactions arising when this chemistry is brought together with urea, the most common stabiliser of these solutions. 1H, 13C and steady-state heteronuclear Overhauser effect NMR studies on the cellulose analogues (methyl-β-glucopyranoside (β-MeO-Glcp) and microcrystalline cellulose), combined with pH and ATR-FTIR measurements, reveal concurrent interactions of urea with both CO2 and CO32−– leading to increased uptake of CO2 and a buffering effect. Yet, regardless of the presence of urea, the route of conversion from CO2 to CO32-, whether going through reaction with the carbohydrate alkoxides or OH−, is likely to determine the chemical environment of the formed CO32-. These findings shed a new light on rather overlooked, albeit prominent, interactions in these solutions with the readily absorbed air CO2, essential for further development and implementation, whether towards regenerated and modified cellulose or CO2-capturing concepts
Solid–Liquid Phase Transitions of Triglycerides in Griebenschmalz, Smalec, and Fedt Studied Using 13C Solid-State NMR with Dynamics-Based Spectral Filtering
The consumer satisfaction of lard-based bread spreads depends on a delicate balance between a liquid fat phase, allowing the spread to flow, and solid fat crystals, providing the product with substance sometimes further enhanced by crispy pork cracklings. Here we apply 13C solid-state NMR with dynamics-based spectral filtering to characterize and follow the temperature dependence of the co-existing solid and liquid triglyceride phases in commercial German Griebenschmalz and Polish smalec, both containing cracklings, as well as home-made Danish fedt and, as a chemically more pure reference, German Schweineschmalz intended for baking. The NMR method allows detection of carbon atoms representative of saturated, unsaturated, and polyunsaturated acyl chains in both solid and liquid states. The results show that the solid comprises multiple crystal forms with different melting temperatures, while the liquid is at low temperature enriched in triglycerides with shorter acyl chains and higher degree of unsaturation, which become diluted with long-chain saturated triglycerides as the solids are melting. The obtained deeper understanding of the concomitant aspects of the phase transitions may pave the way for future efforts of rational optimization of fat blend composition to extend the temperature range over which the product contains sufficient amounts of both solids and liquids to give texture properties appealing to consumers
Influence of urea on methyl β -D-glucopyranoside in alkali at different temperatures
The dissolution efficiency plays an important role on the properties of regenerated cellulose-based products. Urea is known to be one of the additives aiding to improve cellulose dissolution in the NaOH(aq) system. The acting mechanism caused by urea has been debated and one of the hypothesis is that urea could induce a conformational change on cellulose, which promotes dissolution. Here we used NMR spectroscopy on a model system for cellulose, namely, methyl β -D-glucopyranoside (β -MeO-Glcp) and compared chemical shifts and J couplings, which both are indicators for conformational changes, as a function of temperature and upon the addition of urea. We found that in NaOH(aq), the hydroxymethyl group changes its conformation in favour of the population of the gt rotamer, while the presence of urea induced temperature dependent conformational changes. Heteronuclear Overhauser effect experiments showed that urea associates with cellulose but in a non-specific manner. This suggests that urea rather than binding to the carbohydrate, changes the chemical environment inducing a change in conformation of β -MeO-Glcp and likely also for cellulose when dissolved in NaOH(aq) with urea
A 3D printed photoreactor for investigating variable reaction geometry, wavelength, and fluid flow
Research in the field of photochemistry, including photocatalysis and photoelectrocatalysis, has been revitalized due to the potential that photochemical reactions show in the sustainable production of chemicals. Therefore, there is a need for flexible photoreactor equipment that allows for the evaluation of the geometry, light wavelength, and intensity of the vessel, along with the fluid flow in various photochemical reactions. Light emitting diodes (LEDs) have narrow emission spectra and can be either pulsed or run continuously; being flexible, they can be arranged to fit the dimensions of various types of the reactor vessel, depending on the application. This study presents a 3D printed photoreactor with the ability to adjust distances easily and switch between high-power LED light sources. The reactor design utilizes customized printed circuit boards to mount varying numbers and types of LEDs, which enables multiple wavelengths to be used simultaneously. These LED modules, comprised of heat sinks and cooling fans, fulfill the higher heat dissipation requirements of high-power LEDs. The flexibility of the reactor design is useful for optimizing the reaction geometry, flow conditions, wavelength, and intensity of photochemical reactions on a small scale. The estimates for incident light intensity under five possible reactor configurations using ferrioxalate actinometry are reported so that comparisons with other photoreactors can be made. The performance of the photoreactor for differing vessel sizes and distances, in both the flow and batch modes, is given for a photochemical reaction on 2-benzyloxyphenol-a model substance for lignin and applicable in the production of biobased chemicals
Aqueous N,N-dimethylmorpholinium hydroxide as a novel solvent for cellulose
N,N-dimethylmorpholinium hydroxide was synthesized and its ability to dissolve microcrystalline cellulose and pulp was assessed for the first time. Microscopy and UV–Vis measurements showed that dissolution occurred over a range of 1–2\ua0M concentration of the solvent and a maximum solubility of 7\ua0wt% microcrystalline cellulose could be achieved. The stability of cellulose solutions was evaluated by size exclusion chromatography, which did not detect degradation to any noticeable extent. This observation was further confirmed by\ua013C NMR measurements. Finally, DLS studies confirmed that most of the cellulose was molecularly dissolved, with intrinsic viscosity values indicating cellulose chains expansion in this solvent
Evaluation of kraft and hydrolysis lignin hydroconversion over unsupported NiMoS catalyst
Catalytic hydroconversion of Kraft and hydrolysis lignins was for the first time compared in a batch reactor over an unsupported NiMoS-SBA catalyst. We also report the effect of key reaction parameters on the yields and properties of the products. The results obtained at 20 wt% catalyst loading for hydrolysis lignin showed the highest monomer yield of 76.0 wt%, which consisted of 39 wt% aromatics with the lowest alkylphenolics yield of 10.1 wt%. Identical operating conditions, 400 \ub0C, 80 bar, 5 h at 10 wt% catalyst loading, were used to compare both lignins and the highest monomer yield (64.3 wt%) was found for the hydrolysis lignin, consisting of 16.0 wt% alkylphenolics and 20.1 wt% aromatic compounds. These values are considerably higher than those for Kraft lignin with its 47.0 wt% monomer yield. We suggest that the reason for high yields of monomeric units from hydrolysis lignin is that it is more reactive due to its lower ash and sulfur contents and the chemical structural differences compared to the Kraft lignin. More precisely, the bio-oil from hydrolysis lignin contained higher yields of small molecules, sourced from ring-opening of cellulose in the hydrolysis lignin, which could stabilize the reactive oligomeric groups. These yields were two to seven times higher from kraft and hydrolysis lignin, respectively, compared to those obtained without catalyst. The results showed that the NiMoS-SBA catalyst is a promising catalyst for reductive depolymerization of lignin and in addition that the regenerated catalyst had good stability for multiple reaction cycles
Investigation of cellulose dissolution in morpholinium-based solvents: impact of solvent structural features on cellulose dissolution
A series of\ua0N-methylmorpholinium salts with varying\ua0N-alkyl chains and Cl−, OAc−\ua0and OH−\ua0as counter ions have been synthesized and investigated for their ability to dissolve cellulose, aiming at elucidating solvent structural features affecting cellulose dissolution. Synthesis procedures have been developed to, to a high extent, rely on conversions in water and microwave-assisted reactions employing a reduced number of work-up steps and ion-exchange resins that can be regenerated. Water solutions of morpholinium hydroxides proved capable of dissolving cellulose, with those of them possessing alkyl chains longer than ethyl showing surprising dissolution ability at room-temperature. Morpholinium acetates behaved as ionic liquids, and were also capable of dissolving cellulose when combined with DMSO. The obtained cellulose solutions were characterized according to their chemical and colloidal stability using\ua013C NMR spectroscopy, size exclusion chromatography and flow sweep measurements, while the ethanol coagulates were investigated in terms of crystallinity using solid state NMR. In contrast, the morpholinium chlorides obtained were hygroscopic with high melting points and low solubility in common organic solvents\ua0e.g., acetone, DMSO and DMAc, thus lacking the ability to swell or dissolve cellulose
The promotor and poison effects of the inorganic elements of kraft lignin during hydrotreatment over nimos catalyst
One-pot deoxygenation of kraft lignin to aromatics and hydrocarbons of fuel-range quality is a promising way to improve its added value. Since most of the commercially resourced kraft lignins are impure (Na, S, K, Ca, etc., present as impurities), the effect of these impurities on the deoxygenation activity of a catalyst is critical and was scrutinized in this study using a NiMoS/Al2O3 catalyst. The removal of impurities from the lignin indicated that they obstructed the depolymerization. In addition, they deposited on the catalyst during depolymerization, of which the major element was the alkali metal Na which existed in kraft lignin as Na2S and single-site ionic Na+. Conditional experiments have shown that at lower loadings of impurities on the catalyst, their promotor effect was prevalent, and at their higher loadings, a poisoning effect. The number of moles of impurities, their strength, and the synergism among the impurity elements on the catalyst were the major critical factors responsible for the catalyst’s deactivation. The promotor effects of deposited impurities on the catalyst, however, could counteract the negative effects of impurities on the depolymerization
Factores de riesgo para COVID-19 en el personal de salud del Servicio de Emergencia del Hospital María Auxiliadora, marzo-diciembre 2020
Objective: To determine the COVID-19 risk factors among the healthcare personnel of the Emergency Department of the Hospital María Auxiliadora from March to December 2020. Materials and methods: An observational, analytical-correlational, cross-sectional and retrospective research. The sample consisted of 117 emergency department workers. The study used surveys as technique and questionnaires as instrument for data collection. Results: Twenty-five point six four percent (25.64 %) of the study participants contracted COVID-19 through a family member, 38.46 % were doctors and 35.90 % worked as medical practitioners in another health institution. Fifty-six point four one percent (56.41 %) worked 150 or more hours per week and 74.36 % worked more than 12 hours per shift. Regarding the personal protective equipment, 78.63 % wore it correctly while 17.90 % used it incorrectly. Also, contact with a family member with COVID-19 was a risk factor for COVID-19 infection (p = 0.000, OR = 5.486). Conclusions: The results indicate that sociodemographic and occupational aspects are not risk factors for COVID-19 infection. However, having contact with an infected family member proved to be a pathological risk factorObjetivo: Determinar los factores de riesgo para presentar COVID-19 del personal de salud del Servicio de Emergencia del Hospital María Auxiliadora en el periodo marzo a diciembre de 2020. Materiales y métodos: Investigación observacional, analítica-correlacional, transversal y retrospectiva. La muestra estuvo conformada por 117 trabajadores del Servicio de Emergencia. La técnica empleada fue la recolección de datos y el instrumento utilizado fue el cuestionario. Resultados: El 25,64 % de los participantes contrajo la COVID-19 por contacto con un familiar enfermo. Los médicos fueron el 38,49 % y el 35,90 % realizaba labor asistencial en otra institución de salud. El 56,41 % de los participantes trabajaba de 150 horas a más por semana; y 74,36 % laboraba más de 12 horas por turno. Respecto al equipo de protección personal, el 78,64 % percibió un uso correcto de este material, y el 17,90 % lo usaba de forma incorrecta. Asimismo, el contacto con un familiar infectado por COVID-19 fue un factor de riesgo para infección por COVID-19 (p = 0,000; OR = 5,486). Conclusiones: Los aspectos sociodemográficos y laborales no se evidenciaron como factores de riesgo para contraer la COVID-19. El factor patológico que sí demostró ser de riesgo fue el contacto con un familiar enfermo
- …
