6,851 research outputs found
Ray and wave chaos in asymmetric resonant optical cavities
Optical resonators are essential components of lasers and other
wavelength-sensitive optical devices. A resonator is characterized by a set of
modes, each with a resonant frequency omega and resonance width Delta
omega=1/tau, where tau is the lifetime of a photon in the mode. In a
cylindrical or spherical dielectric resonator, extremely long-lived resonances
are due to `whispering gallery' modes in which light circulates around the
perimeter trapped by total internal reflection. These resonators emit light
isotropically. Recently, a new category of asymmetric resonant cavities (ARCs)
has been proposed in which substantial shape deformation leads to partially
chaotic ray dynamics. This has been predicted to give rise to a universal,
frequency-independent broadening of the whispering-gallery resonances, and
highly anisotropic emission. Here we present solutions of the wave equation for
ARCs which confirm many aspects of the earlier ray-optics model, but also
reveal interesting frequency-dependent effects characteristic of quantum chaos.
For small deformations the lifetime is controlled by evanescent leakage, the
optical analogue of quantum tunneling. We find that the lifetime is much
shortened by a process known as `chaos-assisted tunneling'. In contrast, for
large deformations (~10%) some resonances are found to have longer lifetimes
than predicted by the ray chaos model due to `dynamical localization'.Comment: 4 pages RevTeX with 7 Postscript figure
Tamsulosin-induced severe hypotension during general anesthesia: a case report.
Introduction: Tamsulosin, a selective alpha1-adrenergic receptor (alpha1-AR) antagonist, is a widely prescribed first-line agent for benign prostatic hypertrophy (BPH). Its interaction with anesthetic agents has not been described. Case Presentation: We report the case of 54-year-old Asian man undergoing elective left thyroid lobectomy. The only medication the Patient was taking was tamsulosin 0.4 mg for the past year for BPH. He developed persistent hypotension during the maintenance phase of anesthesia while receiving oxygen, nitrous oxide and 1% isoflurane. The hypotension could have been attributable to a possible interaction between inhalational anesthetic and tamsulosin. Conclusion: Vigilance for unexpected hypotension is important in surgical Patients who are treated with selective alpha1-AR blockers. If hypotension occurs, vasopressors that act directly on adrenergic receptors could be more effective
Entanglement sudden birth of two trapped ions interacting with a time-dependent laser field
We explore and develop the mathematics of the two multi-level ions. In
particular, we describe some new features of quantum entanglement in two
three-level trapped ions confined in a one-dimensional harmonic potential,
allowing the instantaneous position of the center-of-mass motion of the ions to
be explicitly time-dependent. By solving the exact dynamics of the system, we
show how survivability of the quantum entanglement is determined by a specific
choice of the initial state settings.Comment: 13 pages, 4 figure
Edge Diffraction, Trace Formulae and the Cardioid Billiard
We study the effect of edge diffraction on the semiclassical analysis of two
dimensional quantum systems by deriving a trace formula which incorporates
paths hitting any number of vertices embedded in an arbitrary potential. This
formula is used to study the cardioid billiard, which has a single vertex. The
formula works well for most of the short orbits we analyzed but fails for a few
diffractive orbits due to a breakdown in the formalism for certain geometries.
We extend the symbolic dynamics to account for diffractive orbits and use it to
show that in the presence of parity symmetry the trace formula decomposes in an
elegant manner such that for the cardioid billiard the diffractive orbits have
no effect on the odd spectrum. Including diffractive orbits helps resolve peaks
in the density of even states but does not appear to affect their positions. An
analysis of the level statistics shows no significant difference between
spectra with and without diffraction.Comment: 25 pages, 12 Postscript figures. Published versio
Experimental Measurement of the Berry Curvature from Anomalous Transport
Geometrical properties of energy bands underlie fascinating phenomena in a
wide-range of systems, including solid-state materials, ultracold gases and
photonics. Most famously, local geometrical characteristics like the Berry
curvature can be related to global topological invariants such as those
classifying quantum Hall states or topological insulators. Regardless of the
band topology, however, any non-zero Berry curvature can have important
consequences, such as in the semi-classical evolution of a wave packet. Here,
we experimentally demonstrate for the first time that wave packet dynamics can
be used to directly map out the Berry curvature. To this end, we use optical
pulses in two coupled fibre loops to study the discrete time-evolution of a
wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads
to an anomalous displacement of the wave packet under pumping. This is both the
first direct observation of Berry curvature effects in an optical system, and,
more generally, the proof-of-principle demonstration that semi-classical
dynamics can serve as a high-resolution tool for mapping out geometrical
properties
Oxidative stress in the brain and arterial hypertension
Universidade Federal de São Paulo, Dept Physiol, BR-04023060 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, BR-04023060 São Paulo, BrazilWeb of Scienc
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
Managing soil fertility in organic farming systems
Complex relationships exist between different components of the organic farm and the quantity and quality of the end products depend on the functioning of the whole system. As such, it is very difficult to isolate soil fertility from production and environmental aspects of the system. Crop rotation is the central tool that integrates the maintenance and development of soil fertility with different aspects of crop and livestock production in organic systems. Nutrient supply to crops depends on the use of legumes to add nitrogen to the system and limited inputs of supplementary nutrients, added in acceptable forms. Manures and crop residues are carefully managed to recycle nutrients around the farm. Management of soil organic matter, primarily through the use of short-term leys, helps ensure good soil structure and biological activity, important for nutrient supply, health and productivity of both crops and livestock. Carefully planned diverse rotations help reduce the incidence of pests and diseases and allow for cultural methods of weed control. As a result of the complex interactions between different system components, fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture
Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis
Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
- …
