42 research outputs found
Papel de las calculadoras en el salón de clase
En este libro se presenta una serie de artículos sobre la utilización de la tecnología portátil en la enseñanza y el aprendizaje de las matemáticas. Algunos de ellos tratan sobre el uso de las calculadoras gráficas en áreas específicas de las matemáticas. Otros presentan reflexiones sobre la relación entre el currículo de matemáticas y la tecnología. Todos ellos se preocupan por el papel que estas nuevas tecnologías pueden jugar en la educación matemática del futuro.
Este libro es el producto del trabajo del grupo temático 18 que se reunió durante el Octavo Congreso Internacional de Educación Matemática que tuvo lugar en Sevilla, España, en julio de 1996.Este grupo centró su trabajo en las calculadoras gráficas, los nuevos computadores portátiles y su papel en la educación matemática. Su público objetivo eran profesores de secundaria con poca experiencia con calculadoras.
Los objetivos de este grupo temático eran:
Informar, desarrollar y apoyar la reflexión y la discusión sobre el papel que las calculadoras han jugado y pueden jugar en la enseñanza y el aprendizaje de las matemáticas de secundaria.
Mostrar por qué y cómo los profesores pueden tener interés en que sus estudiantes usen la tenología portátil.
Presentar el "estado del arte" sobre calculadors y computadores portátiles y su papel en la educación matemática
A Computer for All Students Photo captions
mathematics–in-service teacher training and promoting the appropriate use of hand-held technology in teaching and learning. Ten years ago graphing calculators started a revolution in the teaching and learning of mathematics. In early 1992 we published an article in the Mathematics Teacher describing inexpensive graphing calculators as computers with built-in graphing software (Demana and Waits 1992). These calculators could be viewed as computers available to all students because of their low cost, ease of use, and portability. Our point was that only a few elite would benefit if teachers had to rely exclusively on expensive computer laboratories to deliver computer-enhanced visualization in mathematics teaching and learning. We followed the first article with another Mathematics Teacher article making a case against students ’ use of computer symbolic algebraic manipulation in school mathematics at that time (Waits and Demana 1992). Our reasons then were simple. Both software and hardware for computer algebra systems (CAS) were too expensive to be practical in most mathematics classrooms. We stresse
Using a Calculator to Find Rational Roots
A recent article in the Mathematics Teacher (Eimer 1977) included a recursive method for finding the cube root of ten that used a square root algorithm. The method required only a simple four-function calculator with a square-root key and a memory. In this note we present a more direct method for approximating the nth root of any positive number that requires only a four-function calculator with a square-root key and repeat multiplication capability.</jats:p
Computers and the Rational-Root Theorem—Another View
A recent article offers a 153-line computer program that numerically determines the rational roots of polynomial equations with degree n ≤ 10 (O'Donnell 1988). The program forms and systematically checks all possible rational roots. This article outlines another approach to finding the rational roots of polynomial equations based on computer graphing that is more general and integrates graphing with the purely algebraic approach. The method is easy and can be used with popular computer graphing utilities or with graphing calculators such as the Casio fx- 70000 or the Sharp EL-5200.</jats:p
A Computer-graphing-based Approach to Solving Inequalities
Virtually every algebra or precalculus high school textbook uses either a “case by case” analysis or a “sign chart” method to solve inequalities. Both methods are very limited because they require that the expressions involved be easily factored or given in factored form. Developing noncontrived applications is difficult because of the limitations of these traditional methods. Furthermore, some students do not understand the logic involved in using these traditional methods, nor do they understand the meaning of a solution to an inequality. This lack of understanding about the method and the context of the problem often leads to an ineffective learning experience. Establishing a geometric representation for solving an inequality leads to two major results. First, it serves as a foundation from which the algebraic techniques can be understood. Second, it offers a more general method of solution than the signchart method because it is applicable to expressions that do not factor.</jats:p
