1,186 research outputs found
Simple model for post seismic ionospheric disturbances above an earthquake epicentre and along connecting magnetic field lines
The detection of ionospheric disturbances associated with seismic activity is one of the main objectives of the DEMETER micro-satellite. Its scientific payload provides a comprehensive set of electron and ion measurements. The present work describes a simple model of post-seismic disturbances in the ionosphere above the epicentre. Following a major seism, the neutral atmosphere is assumed to be subject to an acoustic pulse propagating upward, to high altitudes. By coupling this perturbation to the two-dimensional ionospheric model SAMI2 it is then possible to calculate the variations in a number of plasma parameters in the plume region and along connecting magnetic field lines, for an event of representative magnitude. The feasibility of identifying the signature of seismic events from satellite observations is then assessed in view of representative DEMETER measurements and of their natural variability
Discussion critique de l'application des mesures d'absorption par riomètre à l'étude de l'ionosphère
Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004
High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites. <br><br> Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O<sup>+</sup> outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O<sup>+</sup> velocities are identical in both local time sectors and vary between 200 and 450 m s<sup>&minus;1</sup>, with an exception of a few cases of higher speed (~1000 m s<sup>&minus;1</sup>) outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O<sup>+</sup> population. On the contrary, the temperature of the O<sup>+</sup>, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O<sup>+</sup> with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity. <br><br> A deep decrease in the H<sup>+</sup> density at heights and latitudes, where, according to the IRI model, these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance between atomic oxygen and hydrogen was re-established in favour of oxygen. As a consequence, the charge exchange between oxygen and hydrogen does not effectively limit the O<sup>+</sup> production in the regions of the electron precipitation. According to Demeter observations, the O<sup>+</sup> concentration is doubled inside the layers with upward currents (downward electrons). Such a density excess creates the pressure gradient which drives the plasma away from the overdense regions, i.e. first, from the layers of precipitating electrons and then upward along the layers of downward current. <br><br> In addition, the downward currents are identified to be the source regions of hiss emissions, i.e. electron acoustic mode excited via the Landau resonance in the multi-component electron plasma. Such instabilities, which are often observed in the auroral region at 2&ndash;5 Earth radii, but rarely at ionospheric altitudes, are believed to be generated by an electron beam which moves through the background plasma with a velocity higher than its thermal velocity
Monitoring D-Region Variability from Lightning Measurements
In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented
A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms
Evolutionary aspects in evaluating mutations in the melanocortin 4 receptor
More than 70 missense mutations have been identified in the human melanocortin 4 receptor (MC4R), and many of them have been associated with obesity. In a number of cases, the causal link between mutations in MC4R and obesity is controversially discussed. Here, we mined evolution as an additional source of structural information that may help to evaluate the functional relevance of naturally occurring variations in MC4R. The sequence information of more than 60 MC4R orthologs enabled us to identify residues that are important for maintaining receptor function. More than 90% of all inactivating mutations found in obese patients were located at amino acid positions that are highly conserved during 450 million years of MC4R evolution in vertebrates. However, for a reasonable number of MC4R variants, we found no correlation between structural conservation of the mutated position and the reported functional consequence. By re-evaluating selected mutations in the MC4R, we demonstrate the usefulness of combining functional and evolutionary approaches
Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1
The Cassini Plasma Spectrometer (CAPS) instrument observed the plasma environment at Titan during the Cassini orbiter's TA encounter on October 26, 2004. Titan was in Saturn's magnetosphere during the Voyager 1 flyby and also during the TA encounter. CAPS measurements from this encounter are compared with measurements made by the Voyager 1 Plasma Science Instrument (PLS). The comparisons focus on the composition and nature of ambient and pickup ions. They lead to: A) the major ion components of Saturn's magnetosphere in the vicinity of Titan are H+, H-2(+) and O+/CH4+ ions; B) finite gyroradius effects are apparent in ambient O+ ions as the result of their absorption by Titan's extended atmosphere; C) the principal pickup ions are composed of H+, H-2(+), N+/CH2+, CH4+, and N-2(+); D) the pickup ions are in narrow energy ranges; and E) there is clear evidence of the slowing down of background ions due to pickup ion mass loading
Geomagnetic Semiannual Variation Is Not Overestimated and Is Not an Artifact of Systematic Solar Hemispheric Asymmetry
Mursula et al. [2011] (MTL11) suggest that there is a 22-year variation in
solar wind activity that coupled with the variation in heliographic latitude of
the Earth during the year, gives rise to an apparent semiannual variation of
geomagnetic activity in averages obtained over several solar cycles. They
conclude that the observed semiannual variation is seriously overestimated and
is largely an artifact of this inferred 22-year variation. We show: (1) that
there is no systematically alternating annual variation of geomagnetic activity
or of the solar driver, changing with the polarity of the solar polar fields,
(2) that the universal time variation of geomagnetic activity at all times have
the characteristic imprint of the equinoctial hypothesis rather than that of
the axial hypothesis required by the suggestion of MTL11, and (3) that the
semiannual variation is not an artifact, is not overestimated, and does not
need revision.Comment: Submitted to GR
Possible seismo-ionosphere perturbations revealed by VLF signals collected on ground and on a satellite
The results of the monitoring of three VLF/LF signals collected in Petropavlovsk station (Kamchatka, Russia) and one VLF signal collected on board of the DEMETER French satellite are presented. Two periods of the seismic activity occurred in the Japan-Kamchatka area during November&ndash;December 2004 and July&ndash;September 2005 were investigated and the earthquakes with M&ge;6.0 in the Japan-Kamchatka area, located inside one or more of the third Fresnel zones of the three radio paths were considered. The ground data were analysed using residual signal of phase <i>dP</i> or of amplitude <i>dA</i>, defined as the difference between the signal and the average of few quiet days (&plusmn;5 days) immediately preceding or following the current day. Also the satellite data were processed by a method based on the difference between the real signal and the reference one, but in order to obtain this last signal it was necessary to construct previously a model of the signal distribution over the selected area. The method consists: (a) in averaging all the data available in the considered region over a period characterized by low level seismicity, regardless of the global disturbances, in particular, of the magnetic activity; (b) in computing a polynomial expression for the surface as a function of the longitude and the latitude. The model well describes the real data in condition of their completeness and in absence of magnetic storms or seismic forcing. In the quoted periods of seismic activity clear anomalies both in the ground and in satellite data were revealed. The influence of the geomagnetic activity cannot to be excluded, but the seismic forcing seems more probable
- …
