1,429 research outputs found
Shape sensing of miniature snake-like robots using optical fibers
Snake like continuum robots are increasingly used for minimally invasive surgery. Most robotic devices of this sort that have been reported to date are controlled in an open loop manner. Using shape sensing to provide closed loop feedback would allow for more accurate control of the robot's position and, hence, more precise surgery. Fiber Bragg Gratings, magnetic sensors and optical reflectance sensors have all been reported for this purpose but are often limited by their cost, size, stiffness or complexity of fabrication. To address this issue, we designed, manufactured and tested a prototype two-link robot with a built-in fiber-optic shape sensor that can deliver and control the position of a CO 2 -laser fiber for soft tissue ablation. The shape sensing is based on optical reflectance, and the device (which has a 4 mm outer diameter) is fabricated using 3D printing. Here we present proof-of-concept results demonstrating successful shape sensing - i.e. measurement of the angular displacement of the upper link of the robot relative to the lower link - in real time with a mean measurement error of only 0.7°
Evidence for impurity-induced frustration in La2CuO4
Zero-field muon spin rotation and magnetization measurements were performed
in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by
M=Mg2+ spinless impurity. It is shown that while the doping dependence of the
sublattice magnetization (M(x)) is nearly the same for both compounds, the
N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the
Zn-doped compound. This difference, not taken into account within a simple
dilution model, is associated with the frustration induced by the Zn2+ impurity
onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin
stiffness is derived and found to be reduced by Zn doping more significantly
than expected within a dilution model. The effect of the structural
modifications induced by doping on the exchange coupling is also discussed.Comment: 4 pages, 4 figure
Phonon and crystal field excitations in geometrically frustrated rare earth titanates
The phonon and crystal field excitations in several rare earth titanate
pyrochlores are investigated. Magnetic measurements on single crystals of
Gd2Ti2O7, Tb2Ti2O7, Dy2Ti2O7 and Ho2Ti2O7 are used for characterization, while
Raman spectroscopy and terahertz time domain spectroscopy are employed to probe
the excitations of the materials. The lattice excitations are found to be
analogous across the compounds over the whole temperature range investigated
(295-4 K). The resulting full phononic characterization of the R2Ti2O7
pyrochlore structure is then used to identify crystal field excitations
observed in the materials. Several crystal field excitations have been observed
in Tb2Ti2O7 in Raman spectroscopy for the first time, among which all of the
previously reported excitations. The presence of additional crystal field
excitations, however, suggests the presence of two inequivalent Tb3+ sites in
the low temperature structure. Furthermore, the crystal field level at
approximately 13 cm-1 is found to be both Raman and dipole active, indicating
broken inversion symmetry in the system and thus undermining its current
symmetry interpretation. In addition, evidence is found for a significant
crystal field-phonon coupling in Tb2Ti2O7. These findings call for a careful
reassessment of the low temperature structure of Tb2Ti2O7, which may serve to
improve its theoretical understanding.Comment: 13 pages, 7 figure
How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments
This paper compares event-based and continuous hydrological modelling approaches for real-time forecasting of river flows. Both approaches are compared using a lumped hydrologic model (whose structure includes a soil moisture accounting (SMA) store and a routing store) on a data set of 178 French catchments. The main focus of this study was to investigate the actual impact of soil moisture initial conditions on the performance of flood forecasting models and the possible compensations with updating techniques. The rainfall-runoff model assimilation technique we used does not impact the SMA component of the model but only its routing part. Tests were made by running the SMA store continuously or on event basis, everything else being equal. The results show that the continuous approach remains the reference to ensure good forecasting performances. We show, however, that the possibility to assimilate the last observed flow considerably reduces the differences in performance. Last, we present a robust alternative to initialize the SMA store where continuous approaches are impossible because of data availability problems
Loss of α-Synuclein Does Not Affect Mitochondrial Bioenergetics in Rodent Neurons.
Increased α-synuclein (αsyn) and mitochondrial dysfunction play central roles in the pathogenesis of Parkinson's disease (PD), and lowering αsyn is under intensive investigation as a therapeutic strategy for PD. Increased αsyn levels disrupt mitochondria and impair respiration, while reduced αsyn protects against mitochondrial toxins, suggesting that interactions between αsyn and mitochondria influences the pathologic and physiologic functions of αsyn. However, we do not know if αsyn affects normal mitochondrial function or if lowering αsyn levels impacts bioenergetic function, especially at the nerve terminal where αsyn is enriched. To determine if αsyn is required for normal mitochondrial function in neurons, we comprehensively evaluated how lowering αsyn affects mitochondrial function. We found that αsyn knockout (KO) does not affect the respiration of cultured hippocampal neurons or cortical and dopaminergic synaptosomes, and that neither loss of αsyn nor all three (α, β and γ) syn isoforms decreased mitochondria-derived ATP levels at the synapse. Similarly, neither αsyn KO nor knockdown altered the capacity of synaptic mitochondria to meet the energy requirements of synaptic vesicle cycling or influenced the localization of mitochondria to dopamine (DA) synapses in vivo. Finally, αsyn KO did not affect overall energy metabolism in mice assessed with a Comprehensive Lab Animal Monitoring System. These studies suggest either that αsyn has little or no significant physiological effect on mitochondrial bioenergetic function, or that any such functions are fully compensated for when lost. These results implicate that αsyn levels can be reduced in neurons without impairing (or improving) mitochondrial bioenergetics or distribution
He Structure and Mechanisms of He Backward Elastic Scattering
The mechanism of He backward elastic scattering is studied.
It is found that the triangle diagrams with the subprocesses He,
He and He, where and
denote the singlet deuteron and diproton pair in the state,
respectively, dominate in the cross section at 0.3-0.8 GeV, and their
contribution is comparable with that for a sequential transfer of a pair
at 1-1.5 GeV.
The contribution of the , estimated on the basis of the spectator
mechanism of the He reaction, increases the HeHe cross section by one order of magnitude as compared to the
contribution of the deuteron alone.
Effects of the initial and final states interaction are taken into account.Comment: 17 pages, Latex, 4 postscript figures, expanded version, accepted by
Physical Review
Accessible digital ophthalmoscopy based on liquid-lens technology
Ophthalmoscopes have yet to capitalise on novel low-cost miniature optomechatronics, which could disrupt ophthalmic monitoring in rural areas. This paper demonstrates a new design integrating modern components for ophthalmoscopy. Simulations show that the optical elements can be reduced to just two lenses: an aspheric ophthalmoscopic lens and a commodity liquid-lens, leading to a compact prototype. Circularly polarised transpupilary illumination, with limited use so far for ophthalmoscopy, suppresses reflections, while autofocusing preserves image sharpness. Experiments with a human-eye model and cadaver porcine eyes demonstrate our prototype’s clinical value and its potential for accessible imaging when cost is a limiting factor
Nonlinear oscillator with parametric colored noise: some analytical results
The asymptotic behavior of a nonlinear oscillator subject to a multiplicative
Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in
terms of energy-angle coordinates, it is observed that the angle is a fast
variable as compared to the energy. Thus, an effective stochastic dynamics for
the energy can be derived if the angular variable is averaged out. However, the
standard elimination procedure, performed earlier for a Gaussian white noise,
fails when the noise is colored because of correlations between the noise and
the fast angular variable. We develop here a specific averaging scheme that
retains these correlations. This allows us to calculate the probability
distribution function (P.D.F.) of the system and to derive the behavior of
physical observables in the long time limit
Recommended from our members
Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand
The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone
Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies
International audienceLateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes
- …
