250 research outputs found

    Quantum-Mechanical Interference over Macroscopic Distances in the B^0 B^0 bar System

    Full text link
    We argue that the B^0 B^0 bar state generated in the decay of Upsilon(4S) is well suited for performing tests of Einstein-Podolsky-Rosen correlations, i.e., quantum-mechanical interference effects over macroscopic distances. Using measurements of the ratio R = (#like-sign dilepton events)/(#opposite-sign dilepton events) and of the B_H - B_L mass difference we show that already presently existing data strongly favour the contribution of the interference term to R, as it is required by the rules of quantum mechanics.Comment: 8 pages, LaTeX, 2 figures included as eps files together with 2 tex files containing the text of the figures; LaTeXing needs mmatext.sty and producing a ps file of the paper by dvips needs texmma22.pro which are also submitte

    An open--quantum--system formulation of particle decay

    Full text link
    We consider an open quantum system which contains unstable states. The time evolution of the system can be described by an effective non-hermitian Hamiltonian H_{eff}, in accord with the Wigner--Weisskopf approximation, and an additional term of the Lindblad form, the socalled dissipator. We show that, after enlarging the original Hilbert space by states which represent the decay products of the unstable states, the non-hermitian part of H_{eff} --the ``particle decay''-- can be incorporated into the dissipator of the enlarged space via a specific Lindblad operator. Thus the new formulation of the time evolution on the enlarged space has a hermitian Hamiltonian and is probability conserving. The equivalence of the new formulation with the original one demonstrates that the time evolution which is governed by a non-hermitian Hamiltonian and a dissipator of the Lindblad form is nevertheless completely positive, just as systems with hermitian Hamiltonians.Comment: 8 page

    Hawking Radiation via Gravitational Anomalies in Non-spherical Topologies

    Full text link
    We study the method of calculating the Hawking radiation via gravitational anomalies in gravitational backgrounds of constant negative curvature. We apply the method to topological black holes and also to topological black holes conformally coupled to a scalar field.Comment: 25 pages, no figures, version to be published in Phys. Rev.

    Commuting multiparty quantum observables and local compatibility

    Full text link
    A formula for the commutator of tensor product matrices is used to shows that, for qubits, compatibility of quantum multiparty observables almost never implies local compatibility at each site and to predict when this happens/does not happen in a concise manner. In particular, it is shown that two ``fully nontrivial'' nn-qubit observables are compatible locally and globally if and only if they are equal up to sign. In addition, the formula gives insight into the construction of new paradoxes of the type of the Kochen-Specker Theorem, which can then be easily rephrased into proposals for new no hidden variable experiments of the type of the ``Bell Theorem without inequalities''.Comment: 6 page

    One-loop fermionic corrections to the instanton transition in two dimensional chiral Higgs model

    Get PDF
    The one-loop fermionic contribution to the probability of an instanton transition with fermion number violation is calculated in the chiral Abelian Higgs model in 1+1 dimensions, where the fermions have a Yukawa coupling to the scalar field. The dependence of the determinant on fermionic, scalar and vector mass is determined. We show in detail how to renormalize the fermionic determinant in partial wave analysis, which is convenient for computations.Comment: 36 pages, 5 figure

    Geometric Phase in Entangled Systems: A Single-Neutron Interferometer Experiment

    Full text link
    The influence of the geometric phase on a Bell measurement, as proposed by Bertlmann et al. in [Phys. Rev. A 69, 032112 (2004)], and expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, has been observed for a spin-path entangled neutron state in an interferometric setup. It is experimentally demonstrated that the effect of geometric phase can be balanced by a change in Bell angles. The geometric phase is acquired during a time dependent interaction with two radio-frequency (rf) fields. Two schemes, polar and azimuthal adjustment of the Bell angles, are realized and analyzed in detail. The former scheme, yields a sinusoidal oscillation of the correlation function S, dependent on the geometric phase, such that it varies in the range between 2 and 2\sqrt{2} and, therefore, always exceeds the boundary value 2 between quantum mechanic and noncontextual theories. The latter scheme results in a constant, maximal violation of the Bell-like-CHSH inequality, where S remains 2\sqrt2 for all settings of the geometric phase.Comment: 10 pages 9 figure

    Notes on chiral hydrodynamics within effective theory approach

    Full text link
    We address the issue of evaluating chiral effects (such as the newly discovered chiral separation) in hydrodynamic approximation. The main tool we use is effective theory which defines interaction in terms of chemical potentials μ,μ5\mu,\mu_5. In the lowest order in μ,μ5\mu,\mu_5 we reproduce recent results based on thermodynamic considerations. In higher orders the results depend on details of infrared cutoff. Another point of our interest is an alternative way of the anomaly matching through introduction of effective scalar fields arising in the hydrodynamic approximation

    Canonical Formalism for a 2n-Dimensional Model with Topological Mass Generation

    Full text link
    The four-dimensional model with topological mass generation that was found by Dvali, Jackiw and Pi has recently been generalized to any even number of dimensions (2n-dimensions) in a nontrivial manner in which a Stueckelberg-type mass term is introduced [S. Deguchi and S. Hayakawa, Phys. Rev. D 77, 045003 (2008), arXiv:0711.1446]. The present paper deals with a self-contained model, called here a modified hybrid model, proposed in this 2n-dimensional generalization and considers the canonical formalism for this model. For the sake of convenience, the canonical formalism itself is studied for a model equivalent to the modified hybrid model by following the recipe for treating constrained Hamiltonian systems. This formalism is applied to the canonical quantization of the equivalent model in order to clarify observable and unobservable particles in the model. The equivalent model (with a gauge-fixing term) is converted to the modified hybrid model (with a corresponding gauge-fixing term) in a Becchi-Rouet-Stora-Tyutin (BRST)-invariant manner. Thereby it is shown that the Chern-Pontryagin density behaves as an observable massive particle (or field). The topological mass generation is thus verified at the quantum-theoretical level.Comment: 29 pages, no figures, minor corrections, published versio

    Decoherence of entangled kaons and its connection to entanglement measures

    Get PDF
    We study the time evolution of the entangled kaon system by considering the Liouville - von Neumann equation with an additional term which allows for decoherence. We choose as generators of decoherence the projectors to the 2-particle eigenstates of the Hamiltonian. Then we compare this model with the data of the CPLEAR experiment and find in this way an upper bound on the strength λ\lambda of the decoherence. We also relate λ\lambda to an effective decoherence parameter ζ\zeta considered previously in literature. Finally we discuss our model in the light of different measures of entanglement, i.e. the von Neumann entropy SS, the entanglement of formation EE and the concurrence CC, and we relate the decoherence parameter ζ\zeta to the loss of entanglement: 1E1 - E.Comment: comments and references added, 18 pages, 1 figur
    corecore