2,181 research outputs found
Charged particle environment of Titan during the T9 flyby
The ion measurements of the Cassini Plasma Spectrometer are presented which were acquired on 26 December 2005, during the T9 flyby at Titan. The plasma flow and magnetic field directions in the distant plasma environment of the moon were distinctly different from the other flybys. The near-Titan environment, dominated by ions of Titan origin, had a split signature, each with different ion composition; the first region was dominated by dense, slow, and cold ions in the 16-19 and 28-40 amu mass range, the second region contained only ions with mass 1 and 2, much less dense and less slow. Magnetospheric ions penetrate marginally into region 1, whereas the region-2 ion population is mixed. A detailed analysis has led us to conclude that the first event was due to the crossing of the mantle of Titan, whereas the second one very likely was a wake crossing. The split indicates the non-convexity of the ion-dominated volume around Titan. Both ion distributions are analysed in detail
Produção de celulases e xilanases por Aspergillus niger através de fermentação semi-sólida em biorreator de colunas instrumentado.
Abordagem de sistemas de controle para desenvolvimento de instrumento de medida de pressão intracelular.
bitstream/CNPDIA/10190/1/PA27_98.pd
Titan's magnetic field signature during the Cassini T34 flyby: Comparison between hybrid simulations and MAG data
During the T34 flyby on 19 July 2007, the Cassini spacecraft passed through the magnetic pile-up region at Titan's ramside. The magnetic environment of Titan during this flyby is studied using a three-dimensional hybrid simulation model. This approach treats the electrons of the plasma as a massless, charge-neutralizing fluid, whereas the effects of finite ion gyroradii are taken into account by modeling the ions as individual particles. The simulation results are compared to data collected by the Cassini Magnetometer Instrument. The key features of the measured magnetic field signature have shown to be fully reproducible in the framework of the simulation model. Several signatures in the observed magnetic field can be ascribed to the passage of the Cassini spacecraft through the magnetic barrier upstream of Titan.Fil: Simon, S.. Technische Universitat Braunschweig; AlemaniaFil: Motschmann, U.. Technische Universitat Braunschweig; AlemaniaFil: Kleindienst, G.. Technische Universitat Braunschweig; AlemaniaFil: Glassmeier, K. H.. Technische Universitat Braunschweig; AlemaniaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Dougherty, M. K.. Imperial College London; Reino Unid
Instrumentação e processamento de dados para avaliação de aumento de escala em reator do tipo air-lift.
Entrada correta: FARINAS, C. S
Penetrating particle ANalyzer (PAN)
PAN is a scientific instrument suitable for deep space and interplanetary
missions. It can precisely measure and monitor the flux, composition, and
direction of highly penetrating particles (100 MeV/nucleon) in deep
space, over at least one full solar cycle (~11 years). The science program of
PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar
physics, space weather and space travel. PAN will fill an observation gap of
galactic cosmic rays in the GeV region, and provide precise information of the
spectrum, composition and emission time of energetic particle originated from
the Sun. The precise measurement and monitoring of the energetic particles is
also a unique contribution to space weather studies. PAN will map the flux and
composition of penetrating particles, which cannot be shielded effectively,
precisely and continuously, providing valuable input for the assessment of the
related health risk, and for the development of an adequate mitigation
strategy. PAN has the potential to become a standard on-board instrument for
deep space human travel.
PAN is based on the proven detection principle of a magnetic spectrometer,
but with novel layout and detection concept. It will adopt advanced particle
detection technologies and industrial processes optimized for deep space
application. The device will require limited mass (~20 kg) and power (~20 W)
budget. Dipole magnet sectors built from high field permanent magnet Halbach
arrays, instrumented in a modular fashion with high resolution silicon strip
detectors, allow to reach an energy resolution better than 10\% for nuclei from
H to Fe at 1 GeV/n
Titan's interaction with the supersonic solar wind
After 9 years in the Saturn system, the Cassini spacecraft finally observed Titan in the supersonic and super-Alfvénic solar wind. These unique observations reveal that Titan?s interaction with the solar wind is in many ways similar to unmagnetized planets Mars and Venus and active comets in spite of the differences in the properties of the solar plasma in the outer solar system. In particular, Cassini detected a collisionless, supercritical bow shock and a well-defined induced magnetosphere filled with mass-loaded interplanetary magnetic field lines, which drape around Titan?s ionosphere. Although the flyby altitude may not allow the detection of an ionopause, Cassini reports enhancements of plasma density compatible with plasma clouds or streamers in the flanks of its induced magnetosphere or due to an expansion of the induced magnetosphere. Because of the upstream conditions, these observations may be also relevant to other bodies in the outer solar system such as Pluto, where kinetic processes are expected to dominate.Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Hamilton, D. C.. University of Maryland; Estados UnidosFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Hospodarsky, G.. University of Iowa; Estados UnidosFil: Mitchell, D.. University Johns Hopkins; Estados UnidosFil: Sergis, N.. Academy of Athens; GreciaFil: Edberg, N. J. T.. Swedish Institute of Space Physics,; SueciaFil: Dougherty, M. K.. Imperial College London; Reino Unid
The stability of lidocaine and epinephrine solutions exposed to electric current and comparative administration rates of the two drugs into pig bladder wall.
Intravesical electromotive administration of local anesthetics is clinically successful but electrochemistry, cost and effectiveness limit the choice of drugs to diluted lidocaine HCl 4% mixed with epinephrine. These studies address the stability of lidocaine and epinephrine both over time and when exposed to electric current, i.e. transport rates with passive diffusion and electromotive administration. The drug mixture used was 50 ml lidocaine 4%, 50 ml H2O and 1 ml epinephrine 1/1000. For stability, the solution was placed either in bowls for 7 days or in a two chamber cell with the donor compartment (drugs) separated from the receptor compartment (NaCl solution) by a viable pig bladder wall. This was subjected to 30 mA for 45 min. Stability was measured with mass spectrometry. The cell was also used to determine transport rates with passive diffusion and currents of 20 mA and 30 mA, over 20, 30 and 45 min. Drug measurements in both compartments and bladder were made with HPLC. Lidocaine remained stable throughout the 7 days, epinephrine on day 1 only and both drugs were stable with 30 mA for 45 min. Comparing 20 mA and 30 mA with passive diffusion, there were significant differences in 6/6 donor compartment lidocaine levels, 4/6 receptor compartment levels and 6/6 bladder tissue levels and also in 6/6 epinephrine donor levels and 6/6 tissue levels. The combination lidocaine and epinephrine remains stable for 1 day and when exposed to 30 mA for 45 min. Electric current accelerates the transport of lidocaine and epinephrine
Novo instrumento automático para medida de pressão intracelular em vegetais.
Neste trabalho será mostrado como o modelo do instrumento é utilizado de forma a auxiliar no projeto de uma sonda de pressão automática, além dos resultados práticos obtidos em experimentos de bancada para caracterização da sonda. A versão da sonda de pressão usada para o trabalho foi a de compensação térmica e a automação é baseada na teoria de Sistemas de Controle.bitstream/CNPDIA/8123/1/CiT17_2002.pd
- …
