1,481 research outputs found

    A Spatial Autoregressive Specification with a Comparable Sales Weighting Scheme

    Get PDF
    This research incorporates a Spatial Autoregressive Variable with Similarity components (SARS) within a traditional hedonic model. The behavior of economic agents and the spatial dependence price structure are linked to the real estate appraisal paradigm. The SARS variable’s similarity components generate anisotropies that deform concentric circles of spatial dependence so as to designate the influence exerted by ‘‘comparables.’’ The incorporation of similarity components improves the predictive capacity and reduces the spatial dependence among residuals in the SAR model. The research determines for the Montreal Urban Community the underlying distance parameters of spatial dependence as well as anisotropic factors specific to price interdependence for two single-family house archetypes: the condominium and the individual house.

    Automaticity revisited: when print doesn't activate semantics

    Get PDF
    It is widely accepted that the presentation of a printed word automatically triggers processing that ends with full semantic activation. This processing, among other characteristics, is held to occur without intention, and cannot be stopped. The results of the present experiment show that this account is problematic in the context of a variant of the Stroop paradigm. Subjects named the print color of words that were either neutral or semantically related to color. When the letters were all colored, all spatially cued, and the spaces between letters were filled with characters from the top of the keyboard (i.e., 4, #, 5, %, 6, and *), color naming yielded a semantically based Stroop effect and a semantically based negative priming effect. In contrast, the same items yielded neither a semantic Stroop effect nor a negative priming effect when a single target letter was uniquely colored and spatially cued. These findings undermine the widespread view that lexical-semantic activation in word reading is automatic in the sense that it occurs without intention and cannot be derailed

    The stroop effect: why proportion congruent has nothing to do with congruency and everything to do with contingency

    Get PDF
    The item-specific proportion congruent (ISPC) effect refers to the observation that the Stroup effect is larger for words that are presented mostly in congruent colors (e.g., BLUE presented 75% of the time in blue) and smaller for words that are presented mostly in a given incongruent color (e.g., YELLOW presented 75% of the time in orange). One account of the ISPC effect, the modulation hypothesis, is that participants modulate attention based on the identity of the word (i.e., participants allow the word to influence responding when it is presented mostly in its congruent color). Another account, the contingency hypothesis, is that participants use the word to predict the response that they will need to make (e.g., if the word is YELLOW, then the response is probably "orange"). Reanalyses of data from L. L. Jacoby, D. S. Lindsay, and S. Hessels (2003), along with results from new experiments, are inconsistent with the modulation hypothesis but entirely consistent with the contingency hypothesis. A response threshold mechanism that uses contingency information provides a sufficient account of the data

    Filling a gap in the semantic gradient: color associates and response set effects in the Stroop task

    Get PDF
    In the Stroop task, incongruent color associates (e.g., LAKE) interfere more with color identification than neutral words do (e.g., sFAT). However, color associates have historically been related to colors in the response set. Response set membership is an important factor in Stroop interference, because color words in the response set interfere more than color words not in the response set It has not been established whether response set membership plays a role in the ability of a color associate to interfere with color identification. This issue was addressed in two experiments (one using vocal responses and one using manual responses) by comparing the magnitude of interference caused by color associates related to colors in the response set with that of interference caused by color associates unrelated to colors in the response set. The results of both experiments show that color associates unrelated to colors in the response set interfered with color identification more than neutral words did. However, the amount of interference was less than that from color associates that were related to colors in the response set. In addition, this pattern was consistent across response modalities. These results are discussed with respect to various theoretical accounts of Stroop interference

    The locus of serial processing in reading aloud:Orthography-to-phonology computation or speech planning?

    Get PDF
    Dual-route theories of reading posit that a sublexical reading mechanism that operates serially and from left to right is involved in the orthography-to-phonology computation. These theories attribute the masked onset priming effect (MOPE) and the phonological Stroop effect (PSE) to the serial left-to-right operation of this mechanism. However, both effects may arise during speech planning, in the phonological encoding process, which also occurs serially and from left to right. In the present paper, we sought to determine the locus of serial processing in reading aloud by testing the contrasting predictions that the dual-route and speech planning accounts make in relation to the MOPE and the PSE. The results from three experiments that used the MOPE and the PSE paradigms in English are inconsistent with the idea that these effects arise during speech planning, and consistent with the claim that a sublexical serially operating reading mechanism is involved in the print-to-sound translation. Simulations of the empirical data on the MOPE with the dual route cascaded (DRC) and connectionist dual process (CDP++) models, which are computational implementations of the dual-route theory of reading, provide further support for the dual-route account.24 page(s

    Values for level structures with polynomial-time algorithms, relevant coalition functions, and general considerations

    Get PDF
    Exponential runtimes of algorithms for TU-values like the Shapley value are one of the biggest obstacles in the practical application of otherwise axiomatically convincing solution concepts of cooperative game theory. We discuss how the hierarchical structure of a level structure improves the runtimes compared to an unstructured set of players. As examples, we examine the Shapley levels value, the nested Shapley levels value, and, as a new LS-value, the nested Owen levels value. Polynomial-time algorithms for these values (under ordinary conditions) are provided. Furthermore, we introduce relevant coalition functions where all coalitions which are not relevant for the payoff calculation have a Harsanyi dividend of zero. By these coalition functions, our results shed new light on the computation of values of the Harsanyi set and many values from extensions of this set

    Modelling the impacts of ammonia emissions reductions on North American air quality

    Get PDF
    A unified regional air-quality modelling system (AURAMS) was used to investigate the effects of reductions in ammonia emissions on regional air quality, with a focus on particulate-matter formation. Three simulations of one-year duration were performed for a North American domain: (1) a base-case simulation using 2002 Canadian and US national emissions inventories augmented by a more detailed Canadian emissions inventory for agricultural ammonia; (2) a 30% North-American-wide reduction in agricultural ammonia emissions; and (3) a 50% reduction in Canadian beef-cattle ammonia emissions. The simulations show that a 30% continent-wide reduction in agricultural ammonia emissions lead to reductions in median hourly PM<sub>2.5</sub> mass of <1 μg m<sup>−3</sup> on an annual basis. The atmospheric response to these emission reductions displays marked seasonal variations, and on even shorter time scales, the impacts of the emissions reductions are highly episodic: 95th-percentile hourly PM<sub>2.5</sub> mass decreases can be up to a factor of six larger than the median values. <br><br> A key finding of the modelling work is the linkage between gas and aqueous chemistry and transport; reductions in ammonia emissions affect gaseous ammonia concentrations close to the emissions site, but substantial impacts on particulate matter and atmospheric deposition often occur at considerable distances downwind, with particle nitrate being the main vector of ammonia/um transport. Ammonia emissions reductions therefore have trans-boundary consequences downwind. Calculations of critical-load exceedances for sensitive ecosystems in Canada suggest that ammonia emission reductions will have a minimal impact on current ecosystem acidification within Canada, but may have a substantial impact on future ecosystem acidification. The 50% Canadian beef-cattle ammonia emissions reduction scenario was used to examine model sensitivity to uncertainties in the new Canadian agricultural ammonia emissions inventory, and the simulation results suggest that further work is needed to improve the emissions inventory for this particular sector. It should be noted that the model in its current form neglects coarse mode base cation chemistry, so the predicted effects of ammonia emissions reductions shown here should be considered upper limits

    Co2 emission reduction in Germany - from a scientific perspective

    Get PDF
    Following the Paris Agreement, Germany set targets and interim goals in its Climate Action Plan to become climate neutral by 2045, but the implementation lacks behind. This thesis analyzes CO2 reduction measures that Germany takes from the perspective of scientific research, compared with the public sector, private companies, start-ups, and NGOs. Based on a grounded theory approach, analyzing case studies and interviews, a comparative analysis of the examination reveals that systemic change is required. One important recommendation is the unification of climate targets on all levels. Furthermore, new laws, regulations, and financial recourses are necessary to develop strategies and innovations to steer the system toward a net-zero future

    Axiomatizations of Harsanyi Solutions and Extensions, Values for Level Structures, and Polynomial-Time Algorithms

    Get PDF
    This thesis focuses on solution concepts for cooperative games with transferable utility (TU-games), which are single-valued (TU-values). In the first chapter, we present value dividends, a new concept for TU-values. Value dividends are, similar to Harsanyi dividends, recursively defined and can be considered as the pure cooperation benefit a player receives for participating in a coalition. We propose new characterizations of TU-values from the Harsanyi set, known as Harsanyi solutions, which use also axioms that apply value dividends. In addition, we generalize the Harsanyi set, where each TU-value from this new class is defined by distributing the Harsanyi dividends by weights that may depend on the whole coalition function. As a representative of the generalized Harsanyi set, the proportional Harsanyi solution is introduced. This new proportional TU-value distributes the worth of the grand coalition proportionally to the ratio of the sums of the value dividends over all subcoalitions in that the players are involved. The proportional Shapley value, a weighted TU-value with the worths of the singletons as weights, is part of the generalized Harsanyi set as well. We present new characterizations as proportional counterparts to famous axiomatizations of the Shapley value. Two new axioms, proportionality and player splitting, mark the key difference to the Shapley value. The player splitting axiom states that players’ payoffs do not change if another player splits into two new players who have the same impact on the game as the original player. In particular, this axiom justifies the use of the proportional Shapley value in many economic situations, especially for cost allocation. The second chapter deals with games with level structures. In these hierarchical structures, each level corresponds to a partition of the player set, that becomes increasingly coarse from the trivial partition containing only singletons to the partition containing only the grand coalition. Together with a TU-game, we receive games on level structures (LS-games) with appropriate solutions (LS-values). A top-down algorithm introduces the weighted Shapley hierarchy levels values as a new class of LS-values, an extension of the class of weighted Shapley values. This class contains, as a special case, the Shapley levels value, the most famous extension of the Shapley value for LS-games. Other extensions of the Shapley value that we present with a top-down algorithm are the nested Shapley levels value and the nested Owen levels value. As a further new class, we introduce the Harsanyi support levels set, which extends the Harsanyi solutions of the Harsanyi set to LS-values. Here again, payoffs are made in such a way that the Harsanyi dividends are distributed among the players, this time weighted by special hierarchical weight systems. As an important subset of the Harsanyi support levels set, we investigate the class of the weighted Shapley support levels values. The LS-Values from this class also extend the weighted Shapley values and include the Shapley levels value as a special case too. Exponential runtimes of algorithms for TU-values such as the Shapley value are a major barrier to the application of otherwise axiomatically convincing solution concepts of cooperative game theory. In the third and last chapter, we discuss how the hierarchical structure of a level structure improves the runtimes compared to an unstructured set of players. As examples, we investigate the Shapley levels value, the nested Shapley levels value, and the nested Owen levels value. Polynomial-time algorithms for these LS-values, under ordinary conditions, are provided. Furthermore, we introduce relevant coalition functions where all coalitions that are not relevant for the payoff calculation have a Harsanyi dividend of zero. By these coalition functions, our results shed new light on the computation of TU-values of the Harsanyi set and many TU-values from extensions of this set. This closes the circle to the TU-values from the first chapter.In dieser Dissertation untersuchen wir Lösungskonzepte für kooperative Spiele mit übertragbarem Nutzen (TU-Games), die eine eindeutige Lösung aufweisen (TU-Values). Im ersten Kapitel werden Value-Dividenden eingeführt, ein neues Konzept für TU-Values. Value-Dividenden sind, ähnlich wie Harsanyi-Dividenden, rekursiv definiert und können als der reine Kooperationsgewinn eines Spielers betrachtet werden, den ein Spieler für die Mitwirkung in einer Koalition erhält. Wir stellen neue Charakterisierungen von TU-Values aus dem Harsanyi-Set, die Harsanyi-Solutions, vor, bei denen Axiome benutzt werden, die Value-Dividenden verwenden. Des Weiteren verallgemeinern wir das Harsanyi-Set, wobei jeder TU-Value aus dieser neuen Klasse dadurch definiert ist, dass die Harsanyi-Dividenden auf die Spieler durch Gewichte verteilt werden, die von der ganzen Koalitionsfunktion abhängen können. Als eine Vertreterin des verallgemeinerten Harsanyi-Sets wird die Proportional-Harsanyi-Solution vorgestellt. Dieses neue proportionale Lösungskonzept verteilt den Wert der großen Koalition proportional zum Verhältnis der Summen der Value-Dividenden aller Teilkoalitionen, an denen die Spieler beteiligt sind. Der Proportional-Shapley-Value, ein gewichteter TU-Value mit den Werten der Einerkoalitionen als Gewichte, ist ebenfalls Teil des verallgemeinerten Harsanyi-Sets. Wir schlagen neue Charakterisierungen als proportionale Pendants zu berühmten Axiomatisierungen des Shapley-Values vor. Zwei neue Axiome, Proportionality und Player-Splitting, zeigen dabei den Hauptunterschied zum Shapley-Value auf. Das Player- Splitting-Axiom besagt, dass sich die Auszahlungen der Spieler nicht ändern, wenn sich ein anderer Spieler in zwei neue Spieler aufteilt, die zusammen die gleichen Auswirkungen auf das Spiel haben wie der ursprüngliche Spieler. Insbesondere dieses Axiom rechtfertigt die Anwendung des Proportional-Shapley-Values in vielen ökonomischen Situationen, insbesondere für die Kostenanrechnung. Das zweite Kapitel beschäftigt sich mit Spielen mit Level-Structures. Bei diesen hierarchischen Strukturen entspricht jede Ebene (Level) einer Partition der Spielermenge, die von der trivialen Partition, die nur Einerkoalitionen enthält, bis zu der Partition, die nur die große Koalition enthält, immer gröber werden. Zusammen mit einem TU-Game erhalten wir Spiele auf Level-Structures (LS-Games) mit entsprechenden Lösungskonzepten (LS-Values). Mit einem Top-Down-Algorithmus führen wir als neue Klasse von LS-Values die Weighted-Shapley-Hierarchy-Levels-Values ein, eine Erweiterung der Klasse der Weighted-Shapley-Values. Diese Klasse enthält als Spezialfall den Shapley-Levels-Value, die bekannteste Erweiterung des Shapley-Values für LS-Games. Andere Erweiterungen des Shapley-Values, die wir mit einem Top-Down-Algorithmus vorstellen, sind der Nested- Shapley-Levels-Value und der Nested-Owen-Levels-Value. Als eine weitere neue Klasse führen wir das Harsanyi-Support-Levels-Set ein, das die Harsanyi-Solutions des Harsanyi-Sets zu LS-Values erweitert. Die Auszahlungen werden so vorgenommen, dass die Harsanyi-Dividenden unter den Spielern aufgeteilt werden, diesmal gewichtet mit speziellen hierarchischen Gewichtungssystemen. Als wichtige Teilmenge des Harsanyi-Support-Levels-Set untersuchen wir die Klasse der Weighted-Shapley-Support-Levels-Values. Die LS-Values aus dieser Klasse erweitern auch die Weighted-Shapley-Values und enthalten, als Sonderfall, ebenfalls den Shapley-Levels-Value. Exponentielle Laufzeiten von Algorithmen für TU-Values wie den Shapley-Value sind eines der größten Hindernisse bei der praktischen Anwendung von ansonsten axiomatisch überzeugenden Lösungskonzepten der kooperativen Spieltheorie. Im dritten und letzten Kapitel erörtern wir, wie die hierarchische Struktur einer Level-Structure die Laufzeiten im Vergleich zu einer unstrukturierten Spielermenge verbessert. Beispielhaft untersuchen wir den Shapley-Levels-Value, den Nested-Shapley-Levels-Value und den Nested-Owen- Levels-Value. Es werden Polynomzeitalgorithmen für diese LS-Values (unter normalen Bedingungen) angegeben. Darüber hinaus führen wir relevante Koalitionsfunktionen ein, bei denen alle Koalitionen, die für die Auszahlungsberechnung nicht relevant sind, eine Harsanyi-Dividende von Null haben. Anhand dieser Koalitionsfunktionen werfen unsere Ergebnisse auch ein neues Licht auf die Berechnung der TU-Values aus dem Harsanyi-Set und vieler TU-Values aus Verallgemeinerungen dieses Sets. Damit schließt sich der Kreis zu den TU-Values aus dem ersten Kapitel
    corecore