251 research outputs found
Vergleichende humanexperimentelle Untersuchung der Ethanolkinetik im Blut nach Konsum von Weizenschankbier und Weizenvollbier
The 14C(n,g) cross section between 10 keV and 1 MeV
The neutron capture cross section of 14C is of relevance for several
nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron
induced CNO cycles, and neutrino driven wind models for the r process. The
14C(n,g) reaction is also important for the validation of the Coulomb
dissociation method, where the (n,g) cross section can be indirectly obtained
via the time-reversed process. So far, the example of 14C is the only case with
neutrons where both, direct measurement and indirect Coulomb dissociation, have
been applied. Unfortunately, the interpretation is obscured by discrepancies
between several experiments and theory. Therefore, we report on new direct
measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to
800 keV
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Strong fragmentation of low-energy electromagnetic excitation strength in Sn
Results of nuclear resonance fluorescence experiments on Sn are
reported. More than 50 transitions with MeV were
detected indicating a strong fragmentation of the electromagnetic excitation
strength. For the first time microscopic calculations making use of a complete
configuration space for low-lying states are performed in heavy odd-mass
spherical nuclei. The theoretical predictions are in good agreement with the
data. It is concluded that although the E1 transitions are the strongest ones
also M1 and E2 decays contribute substantially to the observed spectra. In
contrast to the neighboring even Sn, in Sn the
component of the two-phonon quintuplet built on top of
the 1/2 ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure
Search for the electric dipole excitations to the multiplet in Sn
The odd-mass Sn nucleus was investigated in nuclear resonance
fluorescence experiments up to an endpoint energy of the incident photon
spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University.
More than 50 mainly hitherto unknown levels were found. From the measurement of
the scattering cross sections model independent absolute electric dipole
excitation strengths were extracted. The measured angular distributions
suggested the spins of 11 excited levels. Quasi-particle phonon model
calculations including a complete configuration space were performed for the
first time for a heavy odd-mass spherical nucleus. These calculations give a
clear insight in the fragmentation and distribution of the , , and
excitation strength in the low energy region. It is proven that the
component of the two-phonon quintuplet built on
top of the ground state is strongly fragmented. The theoretical
calculations are consistent with the experimental data.Comment: 10 pages, 5 figure
- …
