1,038 research outputs found
Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
Compact solid discharge products enable energy storage devices with high
gravimetric and volumetric energy densities, but solid deposits on active
surfaces can disturb charge transport and induce mechanical stress. In this
Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals
in lithium-oxygen batteries with organic electrolytes, based on a theory of
electrochemical non-equilibrium thermodynamics originally applied to Li-ion
batteries. As in the case of lithium insertion in phase-separating LiFePO4
nanoparticles, the theory predicts a transition from complex to uniform
morphologies of Li2O2 with increasing current. Discrete particle growth at low
discharge rates becomes suppressed at high rates, resulting in a film of
electronically insulating Li2O2 that limits cell performance. We predict that
the transition between these surface growth modes occurs at current densities
close to the exchange current density of the cathode reaction, consistent with
experimental observations.Comment: 8 pages, 6 fig
Polyclonal B-cell activation by a synthetic analogue of bacterial lipoprotein is functionally different from activation by bacterial lipopolysaccharide
The reactivity of 38 murine strains to a synthetic analogue of bacterial lipoprotein, tripalmitoyl-pentapeptide (TPP), was tested and compared with the reactivity to lipopolysaccharide (LPS). These strains include common laboratory mice and H-2 recombinant inbred lines, as well as some newly bred lines originating from animals recently captured in different regions of Europe. All animals analysed were reactive to TPP and polyclonally activated to proliferation and immunoglobulin synthesis. Large differences in mitogen reactivities of various H-2 recombinant inbred strains suggest that MHC or closely linked gene products influence the reactivity to the LPS and TPP mitogens. By analysing the frequencies of precursor cells reactive to TPP or LPS and the isotype patterns obtained after stimulation, we demonstrated that both mitogens activate individual B cells in different ways.Peer reviewe
Prenhezes e nascimentos de bovinos clonados a partir de células do fluído amniótico e do tecido adiposo in vitro.
Capacity and resistance diagnosis of batteries with voltage-controlled models
Capacity and internal resistance are key properties of batteries determining energy content and power capability. We present a novel algorithm for estimating the absolute values of capacity and internal resistance from voltage and current data. The algorithm is based on voltage-controlled models (VCM). Experimentally-measured voltage is used as input variable to an equivalent circuit model. The simulation gives current as output, which is compared to the experimentally-measured current. We show that capacity loss and resistance increase lead to characteristic fingerprints in the current output of the simulation. In order to exploit these fingerprints, a theory is developed for calculating capacity and resistance from the difference between simulated and measured current. The findings are cast into an algorithm for operando diagnosis of batteries operated with arbitrary load profiles. The algorithm is demonstrated using cycling data from lithium-ion pouch cells operated on full cycles, shallow cycles, and dynamic cycles typical for electric vehicles. Capacity and internal resistance of a “fresh” cell was estimated with high accuracy (mean absolute errors of 0.9 % and 1.8 %, respectively). For an “aged” cell, the algorithm required adaptation of the model’s open-circuit voltage curve in order to obtain high accuracies
Efeito da estimulação ovariana com o uso de FSH sobre a taxa de recuperação ovocitária e produção in vitro de embriões na raça Sindi: resultados preliminares.
Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway
Electrochemical pressure impedance spectroscopy for polymer electrolyte membrane fuel cells: Signal interpretation
Electrochemical pressure impedance spectroscopy (EPIS) is an emerging tool for the diagnosis of polymer electrolyte membrane fuel cells (PEMFC). It is based on analyzing the frequency response of the cell voltage with respect to an excitation of the gas-phase pressure. Several experimental studies in the past decade have shown the complexity of EPIS signals, and so far there is no agreement on the interpretation of EPIS features. The present study contributes to shed light into the physicochemical origin of EPIS features, by using a combination of pseudo-two-dimensional modeling and analytical interpretation. Using static simulations, the contributions of cathode equilibrium potential, cathode overpotential, and membrane resistance on the quasi-static EPIS response are quantified. Using model reduction, the EPIS responses of individual dynamic processes are predicted and compared to the response of the full model. We show that the EPIS signal of the PEMFC studied here is dominated by the humidifier. The signal is further analyzed by using transfer functions between various internal cell states and the outlet pressure excitation. We show that the EPIS response of the humidifier is caused by an oscillating oxygen molar fraction due to an oscillating mass flow rate
From fuel cells to batteries: Synergies, scales and simulation methods
The recent years have shown a dynamic growth of battery research and development activities both
in academia and industry, supported by large governmental funding initiatives throughout the world.
A particular focus is being put on lithium-based battery technologies. This situation provides a stimulating
environment for the fuel cell modeling community, as there are considerable synergies in the
modeling and simulation methods for fuel cells and batteries. At the same time, battery modeling
activities have been, and are still today, considerably weaker than fuel cell modeling activities, in
particular within Europe. A strong modeling and simulation support is therefore urgently needed to
push forward battery technology.
This presentation discusses relevant scales and open questions in battery modeling and simulation.
The state of the art is reviewed. Synergies and dissimilarities between fuel cell and battery modeling
approaches are discussed. For example, while we often model fuel cell performance in terms of stationary
operating points, the battery is an inherently instationary system and always requires transient
simulations.
Examples will be given from both, state-of-the art lithium-ion batteries, and next-generation lithiummetal
systems. We furthermore present results of our own activities that are in the fields of multi-scale
electrochemical and thermal models of LiFePO4-based lithium-ion batteries as well as detailed kinetic
models of lithium-sulfur cells
Determining the Limits of Fast Charging of a High-Energy Lithium-Ion NMC/Graphite Pouch Cell Through Combined Modeling and Experiments
- …
