1,223 research outputs found
Migration from Turkey and the Uncertainty of the Accession of Turkey to the EU
There is a fear that, if Turkey were given admission to the EU, massive migration to the other member countries of the EU would result. This paper develops a theoretical framework for the migration decision that takes into consideration the impact on uncertainty of some of the important economic and social variables that are addressed by the EU membership and institutions. It emphasizes future expectations of living conditions and the level of uncertainty associated with them as a key variable in making migration decisions. It suggests that the more prosperous and stable Turkey is expected to be in the future, the less likely a person will now want to migrate. Hence, the greater certainty now that Turkey will gain admission in to EU, the more attractive is it for potential migrants to remain in Turkey. This framework suggests that measures to hinder Turkey's entry into the EU by having national referendums to approve its entry will increase the uncertainty of the future economic and social prospects in Turkey and will encourage migrants to migrate now to the member countries of the EU.Turkey, Migration, Uncertainty, Accession, European Union
Migration from Turkey and the uncertainty of the accession of Turkey to the EU
There is a fear that if Turkey were given admission to the EU massive migration to the other member countries of the EU would result. This paper develops a theoretical framework for the migration decision that takes into consideration the impact on uncertainty of some of the important economic and social variables that are addressed by the EU membership and institutions. It emphasizes future expectations of living conditions and the level of uncertainty associated with them as a key variable in making migration decisions. It suggests that the more prosperous and stable Turkey is expected to be in the future the less likely a person will now want to migrate. Hence, the greater certainty now that Turkey will gain admission in to EU, the more attractive is it for potential migrants to remain in Turkey. This framework suggests that measures to hinder Turkey's entry into the EU by having national referendums to approve its entry will increase the uncertainty of the future economic and social prospects in Turkey and will encourage migrants to migrate now to the member countries of the EU
Molecular random tilings as glasses
We have recently shown [Blunt et al., Science 322, 1077 (2008)] that
p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles
into a two-dimensional rhombus random tiling. This tiling is close to ideal,
displaying long range correlations punctuated by sparse localised tiling
defects. In this paper we explore the analogy between dynamic arrest in this
type of random tilings and that of structural glasses. We show that the
structural relaxation of these systems is via the propagation--reaction of
tiling defects, giving rise to dynamic heterogeneity. We study the scaling
properties of the dynamics, and discuss connections with kinetically
constrained models of glasses.Comment: 5 pages, 5 figure
Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films
We show that thin films of C60 with a thickness ranging from 10 to 100 nm can promote adhesion between a Au thin film deposited on mica and a solution-deposited layer of the elastomer polymethyldisolaxane (PDMS). This molecular adhesion facilitates the removal of the gold film from the mica support by peeling and provides a new approach to template stripping which avoids the use of conventional adhesive layers. The fullerene adhesion layers may also be used to remove organic monolayers and thin films as well as two-dimensional polymers which are pre-formed on the gold surface and have monolayer thickness. Following the removal from the mica support the monolayers may be isolated and transferred to a dielectric surface by etching of the gold thin film, mechanical transfer and removal of the fullerene layer by annealing/dissolution. The use of this molecular adhesive layer provides a new route to transfer polymeric films from metal substrates to other surfaces as we demonstrate for an assembly of covalently-coupled porphyrins
Theory, Simulation and Nanotechnological Applications of Adsorption on a Surface with Defects
Theory of adsorption on a surface with nanolocal defects is proposed. Two
efficacy parameters of surface modification for nanotechnological purposes are
introduced, where the modification is a creation of nanolocal artificial
defects. The first parameter corresponds to applications where it is necessary
to increase the concentration of certain particles on the modified surface. And
the second one corresponds to the pattern transfer with the help of particle
self-organization on the modified surface. The analytical expressions for both
parameters are derived with the help of the thermodynamic and the kinetic
approaches for two cases: jump diffusion and free motion of adsorbed particles
over the surface. The possibility of selective adsorption of molecules is shown
with the help of simulation of the adsorption of acetylene and benzene
molecules in the pits on the graphite surface. The process of particle
adsorption from the surface into the pit is theoretically studied by molecular
dynamic technique. Some possible nanotechnological applications of adsorption
on the surface with artificial defects are considered: fabrication of sensors
for trace molecule detection, separation of isomers, and pattern transfer.Comment: 12 pages, 2 Postscript figures. Submitted to Surface Science (1998
Nucleation and early stages of layer-by-layer growth of metal organic frameworks on surfaces
High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5−10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface
Opening an energy gap in an electron double layer system at integer filling factor in a tilted magnetic field
We employ magnetocapacitance measurements to study the spectrum of a double
layer system with gate-voltage-tuned electron density distributions in tilted
magnetic fields. For the dissipative state in normal magnetic fields at filling
factor and 4, a parallel magnetic field component is found to give rise
to opening a gap at the Fermi level. We account for the effect in terms of
parallel-field-caused orthogonality breaking of the Landau wave functions with
different quantum numbers for two subbands.Comment: 4 pages, 4 figures included, to appear in JETP Letter
Organisation and ordering of 1D porphyrin polymers synthesised by on-surface Glaser coupling
One-dimensional polymer chains consisting of π-conjugated porphyrin units are formed via Glaser coupling on a Ag(111) surface. Scanning probe microscopy reveals the covalent structure of the products and their ordering. The conformational flexibility within the chains is investigated via a comparision of room temperature and cryogenic measurements
Weiss Oscillations in Surface Acoustic Wave Propagation
The interaction of a surface acoustic wave (SAW) with a a two-dimensional
electron gas in a periodic electric potential and a classical magnetic field is
considered. We calculate the attenuation of the SAW and its velocity change and
show that these quantities exhibit Weiss oscillations.Comment: 4 pages REVTEX, 2 figures included as eps file
Magnetoresistance of a two-dimensional electron gas with spatially periodic lateral modulations: Exact consequences of Boltzmann's equation
On the basis of Boltzmann's equation, and including anisotropic scattering in
the collision operator, we investigate the effect of one-dimensional
superlattices on two-dimensional electron systems. In addition to superlattices
defined by static electric and magnetic fields, we consider mobility
superlattices describing a spatially modulated density of scattering centers.
We prove that magnetic and electric superlattices in -direction affect only
the resistivity component if the mobility is homogeneous, whereas a
mobility lattice in -direction in the absence of electric and magnetic
modulations affects only . Solving Boltzmann's equation numerically,
we calculate the positive magnetoresistance in weak magnetic fields and the
Weiss oscillations in stronger fields within a unified approach.Comment: submitted to PR
- …
