555 research outputs found
Cell arrest and cell death in mammalian preimplantation development
The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue.
To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances.
In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
Technical Aspects for the Evaluation of Circulating Nucleic Acids (CNAs): Circulating Tumor DNA (ctDNA) and Circulating MicroRNAs
Circulating nucleic acids (CNAs), for example, circulating tumor DNA (ctDNA) and circulating microRNA (miRNA), represent promising biomarkers in several diseases including cancer. They can be isolated from many body fluids, such as blood, saliva, and urine. Also ascites, cerebrospinal fluids, and pleural effusion may be considered as a source of CNAs, but with several and intrinsic limitations. Therefore, blood withdrawal represents one of the best sources for CNAs due to the very simple and minimally invasive way of sampling. Moreover, it can be repeated at different time points, giving the opportunity for a real-time monitoring of the disease
Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas
The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.Jinghui Zhang, Gang Wu, Claudia P Miller, Ruth G Tatevossian, James D Dalton, Bo Tang, Wilda Orisme, Chandanamali Punchihewa, Matthew Parker, Ibrahim Qaddoumi, Fredrick A Boop, Charles Lu, Cyriac Kandoth, Li Ding, Ryan Lee, Robert Huether, Xiang Chen, Erin Hedlund, Panduka Nagahawatte, Michael Rusch, Kristy Boggs, Jinjun Cheng, Jared Becksfort, Jing Ma, Guangchun Song, Yongjin Li, Lei Wei, Jianmin Wang, Sheila Shurtleff, John Easton, David Zhao, Robert S Fulton, Lucinda L Fulton, David J Dooling, Bhavin Vadodaria, Heather L Mulder, Chunlao Tang, Kerri Ochoa, Charles G Mullighan, Amar Gajjar, Richard Kriwacki, Denise Sheer, Richard J Gilbertson, Elaine R Mardis, Richard K Wilson, James R Downing, Suzanne J Baker and David W Elliso
CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR
Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date, several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated, Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high sensitivity (<0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients' blood, suggesting that our technique could be adopted for diagnosing various types of cancer at early stages
Dying To Find Out: The Cost of Time at the Dawn of the Multicancer Early Detection Era
Cancer is a significant burden worldwide that adversely impacts life expectancy, quality of life, health care costs, and workforce productivity. Although currently recommended screening tests for individual cancers reduce mortality, they detect only a minority of all cancers and sacrifice specificity for high sensitivity, resulting in a high cumulative rate of false positives. Blood-based multicancer early detection tests (MCED) based on next-generation sequencing (NGS) and other technologies hold promise for broadening the number of cancer types detected in screened populations and hope for reducing cancer mortality. The promise of this new technology to improve cancer detection rates and make screening more efficient at the population level demands the development of novel trial designs that accelerate clinical adoption. Carefully designed clinical trials are needed to address these issues
Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium
Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need
The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review
Background: The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest. This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the detection of multiple cancer types. Methods: The original mapping review was based on comprehensive searches of the electronic databases Medline, Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine whether validation data were reported, and then examined in full. Publications concentrating on monitoring of disease burden or mutations were excluded. Results: The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients. Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation changes (the majority using PCR-based methods). Conclusion: We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-analytical, analytical, and post-analytical considerations were identified which need to be addressed before such biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the inclusion of controls is highly questionable, and larger validation studies will be required before such methods can be considered for early cancer detection
Detection of rare mutations, copy number alterations, and methylation in the same template DNA molecules.
The analysis of cell-free DNA (cfDNA) from plasma offers great promise for the earlier detection of cancer. At present, changes in DNA sequence, methylation, or copy number are the most sensitive ways to detect the presence of cancer. To further increase the sensitivity of such assays with limited amounts of sample, it would be useful to be able to evaluate the same template molecules for all these changes. Here, we report an approach, called MethylSaferSeqS, that achieves this goal, and can be applied to any standard library preparation method suitable for massively parallel sequencing. The innovative step was to copy both strands of each DNA-barcoded molecule with a primer that allows the subsequent separation of the original strands (retaining their 5-methylcytosine residues) from the copied strands (in which the 5-methylcytosine residues are replaced with unmodified cytosine residues). The epigenetic and genetic alterations present in the DNA molecules can then be obtained from the original and copied strands, respectively. We applied this approach to plasma from 265 individuals, including 198 with cancers of the pancreas, ovary, lung, and colon, and found the expected patterns of mutations, copy number alterations, and methylation. Furthermore, we could determine which original template DNA molecules were methylated and/or mutated. MethylSaferSeqS should be useful for addressing a variety of questions relating genetics and epigenetics
Liquid Biopsy for Spinal Tumors: On the Frontiers of Clinical Application
Study Design: Narrative review. Objectives: This article aims to provide a narrative review of the current state of research for liquid biopsy in spinal tumors and to discuss the potential application of liquid biopsy in the clinical management of patients with spinal tumors. Methods: A comprehensive review of the literature was performed using PubMed, Google Scholar, Medline, Embase and Cochrane databases, and the review was limited to articles of English language. All the relevant articles which were identified to be related to liquid biomarker study in spinal tumors, were studied in full text. Results: Liquid biopsy has revolutionized the field of precision medicine by guiding personalized clinical management of cancer patients based on the liquid biomarker status. In recent years, more research has been done to investigate its potential utilization in patients with tumors from the spine. Herein, we review the liquid biomarkers that have been proposed in different spine malignancies including chordoma, chondrosarcoma, Ewing sarcoma, osteosarcoma, astrocytoma and ependymoma. We also discuss the wide window of opportunity to utilize these liquid biomarkers in diagnosis, treatment response, monitoring, and detection of minimal residual disease in patients with spinal tumors. Conclusions: Liquid biomarkers, especially blood-derived circulating tumor DNA, has a promising clinical utility as they are disease-specific, minimally invasive, and the procedure is repeatable. Prospective studies with larger populations are needed to fully establish its use in the setting of spinal tumors
Machine learning to detect the SINEs of cancer.
We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature-the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer
- …
