6,569 research outputs found

    The effect of dark strings on semilocal strings

    Get PDF
    Dark strings have recently been suggested to exist in new models of dark matter that explain the excessive electronic production in the galaxy. We study the interaction of these dark strings with semilocal strings which are solutions of the bosonic sector of the Standard Model in the limit sin2θw=1\sin^2\theta_{\rm w}=1, where θw\theta_{\rm w} is the Weinberg angle. While embedded Abelian-Higgs strings exist for generic values of the coupling constants, we show that semilocal solutions with non-vanishing condensate inside the string core exist only above a critical value of the Higgs to gauge boson mass ratio when interacting with dark strings. Above this critical value, which is greater than unity, the energy per unit length of the semilocal-dark string solutions is always smaller than that of the embedded Abelian-Higgs-dark string solutions and we show that Abelian-Higgs-dark strings become unstable above this critical value. Different from the non-interacting case, we would thus expect semilocal strings to be stable for values of the Higgs to gauge boson mass ratio larger than unity. Moreover, the one-parameter family of solutions present in the non-interacting case ceases to exist when semilocal strings interact with dark strings.Comment: 16 pages including 6 figures; stability analysis adde

    A generalization of bounds for cyclic codes, including the HT and BS bounds

    Full text link
    We use the algebraic structure of cyclic codes and some properties of the discrete Fourier transform to give a reformulation of several classical bounds for the distance of cyclic codes, by extending techniques of linear algebra. We propose a bound, whose computational complexity is polynomial bounded, which is a generalization of the Hartmann-Tzeng bound and the Betti-Sala bound. In the majority of computed cases, our bound is the tightest among all known polynomial-time bounds, including the Roos bound

    Rotating Boson Stars in 5 Dimensions

    Full text link
    We study rotating boson stars in five spacetime dimensions. The boson fields consist of a complex doublet scalar field. Considering boson stars rotating in two orthogonal planes with both angular momenta of equal magnitude, a special ansatz for the boson field and the metric allows for solutions with nontrivial dependence on the radial coordinate only. The charge of the scalar field equals the sum of the angular momenta. The rotating boson stars are globally regular and asymptotically flat. For our choice of a sixtic potential the rotating boson star solutions possess a flat spacetime limit. We study the solutions in flat and curved spacetime.Comment: 17 pages, 6 figure

    Angularly excited and interacting boson stars and Q-balls

    Get PDF
    We study angularly excited as well as interacting non-topological solitons, so-called Q-balls and their gravitating counterparts, so-called boson stars in 3+1 dimensions. Q-balls and boson stars carry a non-vanishing Noether charge and arise as solutions of complex scalar field models in a flat space-time background and coupled minimally to gravity, respectively. We present examples of interacting Q-balls that arise due to angular excitations, which are closely related to the spherical harmonics. We also construct explicit examples of rotating boson stars that interact with non-rotating boson stars. We observe that rotating boson stars tend to absorb the non-rotating ones for increasing, but reasonably small gravitational coupling. This is a new phenomenon as compared to the flat space-time limit and is related to the negative contribution of the rotation term to the energy density of the solutions. In addition, our results indicate that a system of a rotating and non-rotating boson star can become unstable if the direct interaction term in the potential is large enough. This instability is related to the appearance of ergoregions.Comment: 20 pages including 9 figures; for higher quality figures please contact the authors; v2: minor changes, final version to appear in Phys. Rev.

    Gravitating Semilocal strings

    Full text link
    We discuss the properties of semilocal strings minimally coupled to gravity. Semilocal strings are solutions of the bosonic sector of the Standard Model in the limit sin2θW=1\sin^2\theta_W=1 (where θW\theta_W is the Weinberg angle) and correspond to embedded Abelian-Higgs strings for a particular choice of the scalar doublet. We focus on the limit where the gauge boson mass is equal to the Higgs boson mass such that the solutions fulfill the Bogomolnyi-Prasad-Sommerfield (BPS) bound.Comment: Contribution to the Proceedings of the Spanish Relativity Meeting (ERE) 2009, Bilbao, Spai

    Geodesic motion in the space-time of cosmic strings interacting via magnetic fields

    Full text link
    We study the geodesic motion of test particles in the space-time of two Abelian-Higgs strings interacting via their magnetic fields. These bound states of cosmic strings constitute a field theoretical realization of p-q-strings which are predicted by inflationary models rooted in String Theory, e.g. brane inflation. In contrast to previously studied models describing p-q-strings our model possesses a Bogomolnyi-Prasad-Sommerfield (BPS) limit. If cosmic strings exist it would be exciting to detect them by direct observation. We propose that this can be done by the observation of test particle motion in the space-time of these objects. In order to be able to make predictions we have to solve the field equations describing the configuration as well as the geodesic equation numerically. The geodesics can then be classified according to the test particle's energy, angular momentum and momentum along the string axis. We find that the interaction of two Abelian-Higgs strings can lead to the existence of bound orbits that would be absent without the interaction. We also discuss the minimal and maximal radius of orbits and comment on possible applications in the context of gravitational wave emission.Comment: v1: 22 pages including 17 figures; v2: new figure added, section on observables added; acccepted for publication in Phys. Rev.

    Glueball condensates as holographic duals of supersymmetric Q-balls and boson stars

    Full text link
    We study non-spinning Q-balls and boson stars in 4-dimensional Anti-de Sitter (AdS) space-time. We use an exponential scalar field potential that appears in gauge-mediated supersymmetry (SUSY) breaking in the minimal supersymmetric extension of the Standard Model (MSSM). We investigate the dependence of the charge and mass of these non-topological solitons on the negative cosmological constant, the frequency that appears in the periodic time-dependence as well as on the ratio between the SUSY breaking scale and the Planck mass. Next to fundamental solutions without nodes in the scalar field function we also construct radially excited solutions. In the second part of the paper we put the emphasis on the holographic interpretation of these solutions in terms of Bose-Einstein condensates of scalar glueballs that are described by a strongly coupled Quantum Field Theory (QFT) on the boundary of global AdS.Comment: 17 pages including 11 figures; v2: 19 pages including 13 figures, references added, figures adde

    Hard real-time performances in multiprocessor-embedded systems using ASMP-Linux

    Get PDF
    Multiprocessor systems, especially those based on multicore or multithreaded processors, and new operating system architectures can satisfy the ever increasing computational requirements of embedded systems.ASMP-LINUX is a modified, high responsiveness, open-source hard real-time operating system for multiprocessorsystems capable of providing high real-time performance while maintaining the code simple and not impacting on theperformances of the rest of the system. Moreover, ASMP-LINUX does not require code changing or application recompiling/relinking.In order to assess the performances of ASMP-LINUX, benchmarks have been performed on several hardware platformsand configurations

    Modulation instability and conservation of energy:toward a new model

    Get PDF
    L'articolo analizza la propagazione in regime nonlineare di un segnale ottico CW in presenza di una "piccola" perturbazione. In letteratura sono presenti lavori che specificano i parametri fisici che regolano l'interazione tra il segnale CW e la perturbazione ma non si hanno indicazioni relative ai limiti di applicabilità dei modelli proposti. Obiettivo principale di questo lavoro è rappresentato dalla definizione dei parametri che "attivano" l'instabilità di modulazione e regolano il regime di propagazione nonlineare. A tal fine, il regime di propagazione nonlineare è analizzato vincolandolo al principio di conservazione dell'energia

    Charged State of a Spherical Plasma in Vacuum

    Full text link
    The stationary state of a spherically symmetric plasma configuration is investigated in the limit of immobile ions and weak collisions. Configurations with small radii are positively charged as a significant fraction of the electron population evaporates during the equilibration process, leaving behind an electron distribution function with an energy cutoff. Such charged plasma configurations are of interest for the study of Coulomb explosions and ion acceleration from small clusters irradiated by ultraintense laser pulses and for the investigation of ion bunches propagation in a plasma
    corecore