19,103 research outputs found
A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses
Multipath propagation in the interstellar medium distorts radio pulses, an
effect predominant for distant pulsars observed at low frequencies. Typically,
broadened pulses are analyzed to determine the amount of propagation-induced
pulse broadening, but with little interest in determining the undistorted pulse
shapes. In this paper we develop and apply a method that recovers both the
intrinsic pulse shape and the pulse broadening function that describes the
scattering of an impulse. The method resembles the CLEAN algorithm used in
synthesis imaging applications, although we search for the best pulse
broadening function, and perform a true deconvolution to recover intrinsic
pulse structre. As figures of merit to optimize the deconvolution, we use the
positivity and symmetry of the deconvolved result along with the mean square
residual and the number of points below a given threshold. Our method makes no
prior assumptions about the intrinsic pulse shape and can be used for a range
of scattering functions for the interstellar medium. It can therefore be
applied to a wider variety of measured pulse shapes and degrees of scattering
than the previous approaches. We apply the technique to both simulated data and
data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical
Journa
Bose-Einstein Condensates in Rotating Lattices
Strongly interacting bosons in 2D in a rotating square lattice are
investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds
to a rotating lattice potential imprinted on a trapped Bose-Einstein
condensate. Second-order quantum phase transitions between states of different
symmetries are observed at discrete rotation rates. For the square lattice we
study, there are four possible ground-state symmetries.Comment: 4 pages, 5 figures, Accepted for publication in PRL v2: Replaced
phase winding labels with symmetry eigenstate indices, replaced Gaussian
Ansatz with more general treatment and other minor change
The Index of (White) Noises and their Product Systems
(See detailed abstract in the article.) We single out the correct class of
spatial product systems (and the spatial endomorphism semigroups with which the
product systems are associated) that allows the most far reaching analogy in
their classifiaction when compared with Arveson systems. The main differences
are that mere existence of a unit is not it sufficient: The unit must be
CENTRAL. And the tensor product under which the index is additive is not
available for product systems of Hilbert modules. It must be replaced by a new
product that even for Arveson systems need not coincide with the tensor
product
Monolithic InP-Based Grating Spectrometer for Wavelength-Division Multiplexed Systems at 1.5 μm
A monolithic InP-based grating spectrometer for use in wavelength-division multiplexed systems at 1.5 μm is reported.
The spectrometer uses a single etched reflective focusing diffraction grating and resolves >50 channels at 1 nm spacing with a ~0.3nm channel width and at least 19dB channel isolation. Operation is essentially of the state of the input polarisation
- …
