2,465 research outputs found
RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections
PerfWeb: How to Violate Web Privacy with Hardware Performance Events
The browser history reveals highly sensitive information about users, such as
financial status, health conditions, or political views. Private browsing modes
and anonymity networks are consequently important tools to preserve the privacy
not only of regular users but in particular of whistleblowers and dissidents.
Yet, in this work we show how a malicious application can infer opened websites
from Google Chrome in Incognito mode and from Tor Browser by exploiting
hardware performance events (HPEs). In particular, we analyze the browsers'
microarchitectural footprint with the help of advanced Machine Learning
techniques: k-th Nearest Neighbors, Decision Trees, Support Vector Machines,
and in contrast to previous literature also Convolutional Neural Networks. We
profile 40 different websites, 30 of the top Alexa sites and 10 whistleblowing
portals, on two machines featuring an Intel and an ARM processor. By monitoring
retired instructions, cache accesses, and bus cycles for at most 5 seconds, we
manage to classify the selected websites with a success rate of up to 86.3%.
The results show that hardware performance events can clearly undermine the
privacy of web users. We therefore propose mitigation strategies that impede
our attacks and still allow legitimate use of HPEs
Small Hairy Black Holes in Global AdS Spacetime
We study small charged black holes in global AdS spacetime in the presence of
a charged massless minimally coupled scalar field. In a certain parameter range
these black holes suffer from well known superradiant instabilities. We
demonstrate that the end point of the resultant tachyon condensation process is
a hairy black hole which we construct analytically in a perturbative expansion
in the black hole radius. At leading order our solution is a small undeformed
RNAdS black hole immersed into a charged scalar condensate that fills the AdS
`box'. These hairy black hole solutions appear in a two parameter family
labelled by their mass and charge. Their mass is bounded from below by a
function of their charge; at the lower bound a hairy black hole reduces to a
regular horizon free soliton which can also be thought of as a nonlinear Bose
condensate. We compute the microcanonical phase diagram of our system at small
mass, and demonstrate that it exhibits a second order `phase transition'
between the RNAdS black hole and the hairy black hole phases.Comment: 68+1 pages, 18 figures, JHEP format. v2 : small typos corrected and a
reference adde
Shock waves in strongly coupled plasmas
Shock waves are supersonic disturbances propagating in a fluid and giving
rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can
be well described within the hydrodynamic approximation. On the other hand,
strong shocks are discontinuous within hydrodynamics and therefore probe the
microscopics of the theory. In this paper we consider the case of the strongly
coupled N=4 plasma whose microscopic description, applicable for scales smaller
than the inverse temperature, is given in terms of gravity in an asymptotically
space. In the gravity approximation, weak and strong shocks should be
described by smooth metrics with no discontinuities. For weak shocks we find
the dual metric in a derivative expansion and for strong shocks we use
linearized gravity to find the exponential tail that determines the width of
the shock. In particular we find that, when the velocity of the fluid relative
to the shock approaches the speed of light the penetration depth
scales as . We compare the results with second
order hydrodynamics and the Israel-Stewart approximation. Although they all
agree in the hydrodynamic regime of weak shocks, we show that there is not even
qualitative agreement for strong shocks. For the gravity side, the existence of
shock waves implies that there are disturbances of constant shape propagating
on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde
Quantum critical lines in holographic phases with (un)broken symmetry
All possible scaling IR asymptotics in homogeneous, translation invariant
holographic phases preserving or breaking a U(1) symmetry in the IR are
classified. Scale invariant geometries where the scalar extremizes its
effective potential are distinguished from hyperscaling violating geometries
where the scalar runs logarithmically. It is shown that the general critical
saddle-point solutions are characterized by three critical exponents (). Both exact solutions as well as leading behaviors are exhibited.
Using them, neutral or charged geometries realizing both fractionalized or
cohesive phases are found. The generic global IR picture emerging is that of
quantum critical lines, separated by quantum critical points which correspond
to the scale invariant solutions with a constant scalar.Comment: v3: 32+29 pages, 2 figures. Matches version published in JHEP.
Important addition of an exponent characterizing the IR scaling of the
electric potentia
Design, fabrication and performance evaluation of a 22-channel direct reading atomic emission spectrometer using inductively coupled plasma as a source of excitation
The indigenous design, fabrication and performance evaluation of a polychromator, using inductively coupled plasma (ICP) as a source of excitation, are described. A concave holographic grating is used as the dispersing element and a Paschen-Runge mount is chosen to focus the spectra over a wide range along the Rowland circle. Twenty-two exit slits, mounted along the circle, precisely correspond to the wavelengths used for determination of up to twenty elements present in the plasma. Radiations emerging from the exit slits are detected by photomultiplier tubes placed behind them. The photomultiplier signal is recorded by an electronic system consisting of an integrator and a PC-based data acquisition system. The performance of the spectrometer has been evaluated with an ICP excitation source. Synthetic standards in deionized water containing a mixture of twenty impurities have been analysed. Typical determination limits observed for elements range from sub-ppm to ppm levels. All the elements present as impurities can be detected simultaneously. It is also observed that each element has a different emitting region in the ICP flame for which the maximum signal to the background is obtained. The determination limits obtained corresponding to these zones are the lowest. A study of the sensitive emitting zones for several elements has been carried out and the results are demonstrated by photographs of the ICP flame. The study will help in achieving the minimum value of determination limit for an impurity element
On thermodynamics of N=6 superconformal Chern-Simons theory
We study thermodynamics of N=6 superconformal Chern-Simons theory by
computing quantum corrections to the free energy. We find that in weakly
coupled ABJM theory on R(2) x S(1), the leading correction is non-analytic in
the 't Hooft coupling lambda, and is approximately of order lambda^2
log(lambda)^3. The free energy is expressed in terms of the scalar thermal mass
m, which is generated by screening effects. We show that this mass vanishes to
1-loop order. We then go on to 2-loop order where we find a finite and positive
mass squared m^2. We discuss differences in the calculation between Coulomb and
Lorentz gauge. Our results indicate that the free energy is a monotonic
function in lambda which interpolates smoothly to the N^(3/2) behaviour at
strong coupling.Comment: 29 pages. v2: references added. v3: minor changes, references added,
published versio
Null Models of Economic Networks: The Case of the World Trade Web
In all empirical-network studies, the observed properties of economic
networks are informative only if compared with a well-defined null model that
can quantitatively predict the behavior of such properties in constrained
graphs. However, predictions of the available null-model methods can be derived
analytically only under assumptions (e.g., sparseness of the network) that are
unrealistic for most economic networks like the World Trade Web (WTW). In this
paper we study the evolution of the WTW using a recently-proposed family of
null network models. The method allows to analytically obtain the expected
value of any network statistic across the ensemble of networks that preserve on
average some local properties, and are otherwise fully random. We compare
expected and observed properties of the WTW in the period 1950-2000, when
either the expected number of trade partners or total country trade is kept
fixed and equal to observed quantities. We show that, in the binary WTW,
node-degree sequences are sufficient to explain higher-order network properties
such as disassortativity and clustering-degree correlation, especially in the
last part of the sample. Conversely, in the weighted WTW, the observed sequence
of total country imports and exports are not sufficient to predict higher-order
patterns of the WTW. We discuss some important implications of these findings
for international-trade models.Comment: 39 pages, 46 figures, 2 table
Universal scaling properties of extremal cohesive holographic phases
We show that strongly-coupled, translation-invariant holographic IR phases at
finite density can be classified according to the scaling behaviour of the
metric, the electric potential and the electric flux introducing four critical
exponents, independently of the details of the setup. Solutions fall into two
classes, depending on whether they break relativistic symmetry or not. The
critical exponents determine key properties of these phases, like thermodynamic
stability, the (ir)relevant deformations around them, the low-frequency scaling
of the optical conductivity and the nature of the spectrum for electric
perturbations. We also study the scaling behaviour of the electric flux through
bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and
characterize the deviation from the Ryu-Takayanagi prescription in terms of the
critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange
- …
