8,853 research outputs found
Path probability distribution of stochastic motion of non dissipative systems: a classical analog of Feynman factor of path integral
We investigate, by numerical simulation, the path probability of non
dissipative mechanical systems undergoing stochastic motion. The aim is to
search for the relationship between this probability and the usual mechanical
action. The model of simulation is a one-dimensional particle subject to
conservative force and Gaussian random displacement. The probability that a
sample path between two fixed points is taken is computed from the number of
particles moving along this path, an output of the simulation, devided by the
total number of particles arriving at the final point. It is found that the
path probability decays exponentially with increasing action of the sample
paths. The decay rate increases with decreasing randomness. This result
supports the existence of a classical analog of the Feynman factor in the path
integral formulation of quantum mechanics for Hamiltonian systems.Comment: 19 pages, 6 figures, 1 table. It is a new text based on
arXiv:1202.0924 (to be withdrawn) with a completely different presentation.
Accepted by Chaos, Solitons & Fractals for publication 201
Optimal measurement of visual motion across spatial and temporal scales
Sensory systems use limited resources to mediate the perception of a great
variety of objects and events. Here a normative framework is presented for
exploring how the problem of efficient allocation of resources can be solved in
visual perception. Starting with a basic property of every measurement,
captured by Gabor's uncertainty relation about the location and frequency
content of signals, prescriptions are developed for optimal allocation of
sensors for reliable perception of visual motion. This study reveals that a
large-scale characteristic of human vision (the spatiotemporal contrast
sensitivity function) is similar to the optimal prescription, and it suggests
that some previously puzzling phenomena of visual sensitivity, adaptation, and
perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and
Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional
and Intelligent Paradigms, Intelligent Systems Reference Library,
Springer-Verlag, Berli
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA
In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action
Analog to Digital Workflow Improvement: A Quantitative Study
This study tracked a radiology department’s conversion from utilization of a Kodak Amber analog system to a Kodak DirectView DR 5100 digital system. Through the use of ProModel(®) Optimization Suite, a workflow simulation software package, significant quantitative information was derived from workflow process data measured before and after the change to a digital system. Once the digital room was fully operational and the radiology staff comfortable with the new system, average patient examination time was reduced from 9.24 to 5.28 min, indicating that a higher patient throughput could be achieved. Compared to the analog system, chest examination time for modality specific activities was reduced by 43%. The percentage of repeat examinations experienced with the digital system also decreased to 8% vs. the level of 9.5% experienced with the analog system. The study indicated that it is possible to quantitatively study clinical workflow and productivity by using commercially available software
CP Violation in Top Physics
CP violation in top physics is reviewed. The Standard Model has negligible
effects, consequently CP violation searches involving the top quark may
constitute the best way to look for physics beyond the Standard Model.
Non-standard sources of CP violation due to an extended Higgs sector with and
without natural flavor conservation and supersymmetric theories are discussed.
Experimental feasibility of detecting CP violation effects in top quark
production and decays in high energy e+ e-, gamma-gamma, mu+ mu-, pp and p-bar
p colliders are surveyed. Searches for the electric, electro-weak and the
chromo-electric dipole moments of the top quark in e+ e- -> t-bar t and in p p
-> t-bar t X are descibed. In addition, other mechanisms that appear promising
for experiments, e.g., tree-level CP violation in e+ e- -> t-bar t h, t-bar t
Z, t-bar t nu_e-bar nu_e and in the top decay t -> b tau nu_tau and CP
violation driven by s-channel Higgs exchanges in p p, gamma gamma, mu+ mu- ->
t-bar t etc., are also discussed.Comment: 253 pages, 70 figures, A 2-up version of this postscript file may be
obtained at http://thy.phy.bnl.gov/~soni/topreview.htm
Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model
The alignment in flavour space of the Yukawa matrices of a general
two-Higgs-doublet model results in the absence of tree-level flavour-changing
neutral currents. In addition to the usual fermion masses and mixings, the
aligned Yukawa structure only contains three complex parameters, which are
potential new sources of CP violation. For particular values of these three
parameters all known specific implementations of the model based on discrete
Z_2 symmetries are recovered. One of the most distinctive features of the
two-Higgs-doublet model is the presence of a charged scalar. In this work, we
discuss its main phenomenological consequences in flavour-changing processes at
low energies and derive the corresponding constraints on the parameters of the
aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP.
References added. Discussion slightly extended. Conclusions unchange
Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter
We extract the positron and electron fluxes in the energy range 10 - 100 GeV
by combining the recent data from PAMELA and Fermi LAT. The {\it absolute
positron and electron} fluxes thus obtained are found to obey the power laws:
and respectively, which can be confirmed by the
upcoming data from PAMELA. The positron flux appears to indicate an excess at
energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux
is added to the Galactic positron background. This leaves enough motivation for
considering new physics, such as annihilation or decay of dark matter, as the
origin of positron excess in the cosmic rays.Comment: Accepted by JCA
A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems
The human brain intrinsically operates with a large number of synapses, more than 10(15). Therefore, one of the most critical requirements for constructing artificial neural networks (ANNs) is to achieve extremely dense synaptic array devices, for which the crossbar architecture containing an artificial synaptic node at each cross is indispensable. However, crossbar arrays suffer from the undesired leakage of signals through neighboring cells, which is a major challenge for implementing ANNs. In this work, we show that this challenge can be overcome by using Pt/TaOy/nanoporous (NP) TaOx/Ta memristor synapses because of their self-rectifying behavior, which is capable of suppressing unwanted leakage pathways. Moreover, our synaptic device exhibits high non-linearity (up to 10(4)), low synapse coupling (S.C, up to 4.00 x 10(-5)), acceptable endurance (5000 cycles at 85 degrees C), sweeping (1000 sweeps), retention stability and acceptable cell uniformity. We also demonstrated essential synaptic functions, such as long-term potentiation (LTP), long-term depression (LTD), and spiking-timing-dependent plasticity (STDP), and simulated the recognition accuracy depending on the S.C for MNIST handwritten digit images. Based on the average S.C (1.60 x 10(-4)) in the fabricated crossbar array, we confirmed that our memristive synapse was able to achieve an 89.08% recognition accuracy after only 15 training epochs
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …
