50,225 research outputs found

    Unidirectional Transport in Electronic and Photonic Weyl Materials by Dirac Mass Engineering

    Full text link
    Unidirectional transports have been observed in two-dimensional systems, however, so far they have not been experimentally observed in three-dimensional bulk materials. In this theoretical work we show that the recently discovered Weyl materials provide a platform for unidirectional transports inside bulk materials. With high experimental feasibility, a complex Dirac mass can be generated and manipulated in the photonic Weyl crystals, creating unidirectionally propagating modes observable in transmission experiments. Possible realization in (electronic) Weyl semimetals is also studied. We show in a lattice model that, with a short-range interaction, the desired form of the Dirac mass can be spontaneously generated in a first-order transition.Comment: 9 pages, with supplemental materia

    Improved transient simulation of salient-pole synchronous generators with internal and ground faults in the stator winding

    Get PDF
    An improved model for simulating the transient behavior of salient-pole synchronous generators with internal and ground faults in the stator winding is established using the multi-loop circuit method. The model caters for faults under different ground conditions for the neutral, and accounts for the distributed capacitances of the windings to ground. Predictions from the model are validated by experiments, and it is shown that the model accurately predicts the voltage and current waveforms under fault conditions. Hence, it can be used to analyze important features of faults and to design appropriate protection schemes

    Experimental entanglement-assisted quantum delayed-choice experiment

    Full text link
    The puzzling properties of quantum mechanics, wave-particle duality, entanglement and superposition, were dissected experimentally at past decades. However, hidden-variable (HV) models, based on three classical assumptions of wave-particle objectivity, determinism and independence, strive to explain or even defeat them. The development of quantum technologies enabled us to test experimentally the predictions of quantum mechanics and HV theories. Here, we report an experimental demonstration of an entanglement-assisted quantum delayed-choice scheme using a liquid nuclear magnetic resonance quantum information processor. This scheme we realized is based on the recently proposed scheme [Nat. Comms. 5:4997(2014)], which gave different results for quantum mechanics and HV theories. In our experiments, the intensities and the visibilities of the interference are in consistent the theoretical prediction of quantum mechanics. The results imply that a contradiction is appearing when all three assumptions of HV models are combined, though any two of the above assumptions are compatible with it.Comment: 8 pages, 1 table and 6 figure
    corecore