1,491 research outputs found

    Frequent copy number variations of PI3K/AKT pathway and aberrant protein expressions of PI3K subunits are associated with inferior survival in diffuse large B cell lymphoma

    Get PDF
    BACKGROUND: It has been reported that the PI3K/AKT signaling pathway is activated in diffuse large B-cell lymphoma (DLBCL), PI3K constitutive activation plays a crucial role in PI3K/AKT pathway. However, the copy number variations (CNVs) of PI3K subunits on gene level remain unknown in DLBCL. Therefore, the aim of the study is to investigate the CNV of PI3K subunits and their relationship with clinicopathological features exploring the possible mechanism underlying of PI3K activation in DLBCL. METHODS: CNV of 12 genes in the PI3K/AKT pathway was detected by NanoString nCounter in 60 de novo DLBCLs and 10 reactive hyperplasia specimens as controls. Meanwhile, immunohistochemistry (IHC) was performed to examine the expression of p110α, p110β, p110γ, p110δ, and pAKT on DLBCL tissue microarrays. RESULTS: All PI3K and AKT subunits, except for PIK3R1, had various CNVs in the form of copy number amplifications and copy number losses. Their rates were in the range of 8.3–20.0%. Of them PIK3CA and PIK3CB gene CNVs were significantly associated with decreased overall survival (P = 0.029 and P = 0.019, respectively). IHC showed that the frequency of strong positive expression of p110α, p110β, p110γ, and p110δ were 26.7%, 25.0%, 18.3%, and 25.0% respectively, and they were found to be associated with decreased survival (P = 0.022, P = 0.015, P = 0.015, and P = 0.008, respectively). Expression of p110α was not only significantly associated with CNVs of PIK3CA (P = 0.002) but also positively correlated with strong positive expression of pAKT (P = 0.026). CONCLUSIONS: CNV of PIK3CA is highly associated with aberrant p110α protein expression and subsequent activation of PI3K/AKT pathway. CNVs of PIK3CA and PIK3CB, and aberrant protein expression of p110 isoforms are of great important value for predicting inferior prognosis in DLBCL. Frequent CNVs of PI3K/AKT subunits may play an important role in the tumorigenesis of DLBCL

    NLRP3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model of Chronic Kidney Disease

    Get PDF
    Background and Aims. The nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) inflammasome has been implicated in the pathogenesis of chronic kidney disease (CKD); however, its exact role in glomerular injury and tubulointerstitial fibrosis is still undefined. The present study was performed to identify the function of NLRP3 in modulating renal injury and fibrosis and the potential involvement of mitochondrial dysfunction in the murine unilateral ureteral obstruction (UUO) model of CKD. Methods. Employing wild-type (WT) and NLRP3−/− mice with or without UUO, we evaluated renal structure, tissue injury, and mitochondrial ultrastructure, as well as expression of some vital molecules involved in the progression of fibrosis, apoptosis, inflammation, and mitochondrial dysfunction. Results. The severe glomerular injury and tubulointerstitial fibrosis induced in WT mice by UUO was markedly attenuated in NLRP3−/− mice as evidenced by blockade of extracellular matrix deposition, decreased cell apoptosis, and phenotypic alterations. Moreover, NLRP3 deletion reversed UUO-induced impairment of mitochondrial morphology and function. Conclusions. NLRP3 deletion ameliorates mitochondrial dysfunction and alleviates renal fibrosis in a murine UUO model of CKD

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    Site-directed gene integration in transgenic zebrafish mediated by cre recombinase using a combination of mutant Lox sites

    Get PDF
    With current gene-transfer techniques in fish, insertion of DNA into the genome occurs randomly and in many instances at multiple sites. Associated position effects, copy number differences, and multiple gene interactions make gene expression experiments difficult to interpret and fish phenotype less predictable. To meet different fish engineering needs, we describe here a gene targeting model in zebrafish. At first, four target zebrafish lines, each harboring a single genomic lox71 target site, were generated by zebrafish transgenesis. The zygotes of transgenic zebrafish lines were coinjected with capped Cre mRNA and a knockin vector pZklox66RFP. Site-specific integration event happened from one target zebrafish line. In this line two integrant zebrafish were obtained from more than 80,000 targeted embryos (integrating efficiency about 10(-4) to 10(-5)) and confirmed to have a sole copy of the integrating DNA at the target genome site. Genomic polymerase chain reaction analysis and DNA sequencing verified the correct gene target events where lox71 and lox66 have accurately recombined into double mutant lox72 and wild-type loxP. Each integrant zebrafish chosen for analysis harbored the transgene rfp at the designated egfp concatenates. Although the Cre-mediated recombination is site specific, it is dependent on a randomly placed target site. That is, a genomic target cannot be preselected for integration based solely on its sequence. Conclusively, an rfp reporter gene was successfully inserted into the egfp target locus of zebrafish genome by Cre-lox-mediated recombination. This site-directed knockin system using the lox71/lox66 combination should be a promising gene-targeting platform serving various purposes in fish genetic engineering

    Tetra­aqua­(2,2′-bipyridine-κ2 N,N′)magnesium(II) bis­(4-fluoro­benzoate)

    Get PDF
    The title compound, [Mg(C10H8N2)(H2O)4](C7H4FO2)2, consists of a bivalent [Mg(C10H8N2)(H2O)4]2+ cation and two 4-fluorbenzoate anions. In the complex cation, the MgII atom is coordinated by two N atoms from a 2,2′-bipyridine ligand and four water O atoms in a distorted MgN2O4 octa­hedral geometry. The MgII atom is located on a twofold rotation axis and thus a cation exhibits C 2 mol­ecular symmetry. The 2,2′-bipyridine ligands exhibit nearly perfect planarity (r.m.s. deviations = 0.0061 Å). In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into a three-dimensional supra­molecular network

    CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY

    Get PDF
    The silent information regulator (Sir2) family proteins are NAD+-dependent deacetylases. Although a few substrates have been identified, functions of the bacteria Sir2-like protein (CobB) still remain unclear. Here the role of CobB on Escherichia coli chemotaxis was investigated. We used Western blotting and mass spectrometry to show that the response regulator CheY is a substrate of CobB. Surface plasmon resonance (SPR) indicated that acetylation affects the interaction between CheY and the flagellar switch protein FliM. The presence of intact flagella in knockout strains ΔcobB, Δacs, Δ(cobB) Δ(acs), Δ(cheA) Δ(cheZ), Δ(cheA) Δ(cheZ) Δ(cobB) and Δ(cheA) Δ(cheZ) Δ(acs) was confirmed by electron microscopy. Genetic analysis of these knockout strains showed that: (i) the ΔcobB mutant exhibited reduced responses to chemotactic stimuli in chemotactic assays, whereas the Δacs mutant was indistinguishable from the parental strain, (ii) CheY from the ΔcobB mutant showed a higher level of acetylation, indicating that CobB can mediate the deacetylation of CheY in vivo, and (iii) deletion of cobB reversed the phenotype of Δ(cheA) Δ(cheZ). Our findings suggest that CobB regulates E. coli chemotaxis by deacetylating CheY. Thus a new function of bacterial cobB was identified and also new insights of regulation of bacterial chemotaxis were provided

    Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation

    Get PDF
    NADH pyrophosphatase (NudC) catalyses the hydrolysis of NAD(H) to AMP and NMN(H) [nicotinamide mononucleotide (reduced form)]. NudC multiple sequence alignment reveals that homologues from most Mycobacterium tuberculosis isolates, but not other mycobacterial species, have a polymorphism at the highly conserved residue 237. To elucidate the functional significance of this polymorphism, comparative analyses were performed using representative NudC isoforms from M. tuberculosis H37Rv (NudCRv) and M. bovis BCG (NudCBCG). Biochemical analysis showed that the P237Q polymorphism prevents dimer formation, and results in a loss of enzymatic activity. Importantly, NudCBCG was found to degrade the active forms of isoniazid (INH), INH-NAD and ethionamide (ETH), ETH-NAD. Consequently, overexpression of NudCBCG in Mycobacterium smegmatis mc2155 and M. bovis BCG resulted in a high level of resistance to both INH and ETH. Further genetic studies showed that deletion of the nudC gene in M. smegmatis mc2155 and M. bovis BCG resulted in increased susceptibility to INH and ETH. Moreover, inactivation of NudC in both strains caused a defect in drug tolerance phenotype for both drugs in exposure assays. Taken together, these data suggest that mycobacterial NudC plays an important role in the inactivation of INH and ETH

    Detection of B. anthracis Spores and Vegetative Cells with the Same Monoclonal Antibodies

    Get PDF
    Bacillus anthracis, the causative agent of anthrax disease, could be used as a biothreat reagent. It is vital to develop a rapid, convenient method to detect B. anthracis. In the current study, three high affinity and specificity monoclonal antibodies (mAbs, designated 8G3, 10C6 and 12F6) have been obtained using fully washed B. anthracis spores as an immunogen. These mAbs, confirmed to direct against EA1 protein, can recognize the surface of B. anthracis spores and intact vegetative cells with high affinity and species-specificity. EA1 has been well known as a major S-layer component of B. anthracis vegetative cells, and it also persistently exists in the spore preparations and bind tightly to the spore surfaces even after rigorous washing. Therefore, these mAbs can be used to build a new and rapid immunoassay for detection of both life forms of B. anthracis, either vegetative cells or spores
    corecore