23 research outputs found
A study on factors contribute to homelessness issue in Malaysia: A case study at Anjung Singgah YKN in Jalan Hang Lekiu, Kuala Lumpur / Bibi Atika Kamis and Nur Leyiana Ammeera Salama
Homelessness describes the condition of people without a regular residence. People who are homeless are most often unable to acquire and maintain regular, safe, secure, and adequate housing, or lack fixed, regular, and adequate night-time residence. Homelessness can be defined as having no land or shelter. It can be seen as a condition of detachment from society characterized by the lack of the affiliative bonds that link people into their social structures. Homelessness carries implications of belonging nowhere rather than simply having nowhere to sleep. Homelessness involves people who live overcrowded, insecure or substandard accommodation, those forced into involuntary sharing of shelter, or those subjected to high levels of noise pollution or infestation. Homeless including the persons who sleep in a public or private place not designed for use as a regular sleeping accommodation for human beings (Eugene Arthurs, 2008)
Identification and Characterization of Novel Genes involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum
Defense strategies are common in insects including Coleoptera, the largest animal taxon containing various types of beetles. Stink gland secretion of beetles is playing an important role in their defense against detrimental factors in the environment. These glands produce and release defensive secretions containing several specific varieties of substituted benzoquinone compounds. These defensive chemicals act toxic, repellent and as pesticides. Beetles respond to invaders, parasitic microbes and predators with the secretion of defensive substances. Particularly, these defensive substances of beetle performs several functions such as boiling bombardment or as surfactants against many life-threatening organisms. The defensive compounds of beetles are biosynthesized and stored in a specialized storage and secretory organ called odoriferous defensive stink glands. Tribolium castaneum (Coleoptera: Tenebrionidae) produces p-benzoquinones and 1-alkenes in stink glands. Morphology of tenebrionid beetles stink gland has been characterized in detail in the past, but not much is known about the genes that are important for the defensive substance production in the stink glands. Understanding molecular mechanisms of the stink gland development and unveiling the metabolic pathway, its regulation, and the enzymes participating in synthesis of defensive chemicals are essential to understand the self-protected mechanism in synthesis of toxic compounds. In the present study, identification and characterization of novel genes playing key roles in the protected biosynthesis of quinones in stink glands of the T. castaneum is done by following two genome-wide approaches: 1) tissue specific transcriptomics based on RNA-seq, and 2) genome-wide phenotypic screen based on RNAi-mediated gene silencing. Gland-specifically expressed genes and genes causing a gland-specific knockdown phenotype were analyzed by GC-MS to uncover functions in benzoquinone synthesis. Four such identified candidates genes being part of sulfate metabolism, carbohydrate sulfotransferase 5 (CHST5), arylsulfatase B (ARSB), sulfate modifying factor-1 (SUMF1) and sodium independent sulfate transporter (SLC26A11) were then characterized in detail.
In the first part of the study, the RNAi data of the 1st and 2nd phases of the iBeetle screen were analyzed and 130 genes were identified having a potential role in stink gland biology. However, in the rescreen only 69 genes were confirmed. In transcriptomic data, previously 77 genes were identified to be specifically highly expressed in the stink glands. Functional analysis showed that 29 genes are necessary for stink gland function. Importantly, in comparative analysis of the different functional genomics approaches such as differential expression in transcriptomic data and phenotypic screen only revealed one common candidate gene, which suggests that one approach is not sufficient to uncover the majority of genes that play an essential role in stink gland biology. Our findings suggest that a combination of functional genomic approaches are necessary to uncover genes essential for stink gland development. Particularly, phenotypic screens and transcriptomics approaches complement each other in functional genomics of defensive stink gland physiology.
In the second part of the study, RNAi-mediated gene silencing screening of 4748 genes from the 3rd phase of iBeetle screen was employed to uncover genes essential for development, gland morphological changes and physiology of stink glands. The main purpose of the 3rd phase screen were to identify lethal genes but additional screens were added to identify genes with function in different biological processes. Particularly, I used this screen to uncover further genes essential for morphologyical changes and physiology of stink glands. In this screen, 178 genes were identified to be essential for morphology alterations and changes in gland volatile composition. Gene ontology analysis demonstrated that the majority of these genes encodes for enzymes, regulator/receptor binding, transcription factors, receptors, transporters and 40% with unknown function. From this screen one gene, CHST5, that has been analyzed in this study is involved in sulfate conjugation of toxic compounds in the self-protection mechanism. To get a more comprehensive insight into stink-gland function, we also re-analyzed a gland-specific transcriptomic dataset, which was generated in 2013 by Li et al. The very recently assembled gene set reference of Tribolium (OGS3) allowed us to increase the mapping rates by about 30% compared to the initial analysis. 33 transcripts from the new analysis were not detected previously, since they were only newly annotated in the current version of the T. castaneum genome. Since they are very highly expressed in the Tribolium gland tissue compared to the control sample, it is definitely worth to analyze these genes in more detail on a functional level.
In the third part of the study, a detailed characterization of a set of newly identified genes with a role in protected biosynthesis of benzoquinone in odoriferous stink glands of the red flour beetle were performed. Especially CHST5, ARSB, SUMF1 and SLC26A11 were selected and characterized in depth. ARSB was selected from the study of Li et al. (2013), SUMF1 and SLC26A11 from the 2nd phase and CHST5 from the 3rd phase of iBeetle screen on the basis of strongly altered gland phenotypes and differential expression. Sulfate conjugation is used by many insect for detoxification of phenolic compounds. However, sulfate role in stink gland was not identified before. Sulfonation is used by some insects to neutralize plant defensive substances. On the basis of stink gland transcriptome and iBeetle screen data, we studied the function of CHST5, ARSB, SUMF1 and SLC26A11 via RNAi-mediated gene knockdowns, qPCR, GC-MS, LC-MS and in situ hybridization. LC-MS analysis showed presence of sulfate precursors i.e., sulfated glycosylated phenolic precursors in the knockdown situation of the sulfatase. Put together, these studies suggest that these genes play an impotant role in the self-protected biosynthesis of benzoquinone in the red flour beetle stink glands.2023-01-2
Identification and Characterization of Novel Genes involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum
Kisspeptin as a link between metabolism and reproduction: Evidences from rodent and primate studies
Recent Advances in the Understanding of Sepsis-Induced Alterations in the Neuroendocrine System
Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway
A large body of data has established the hypothalamic kisspeptin (KP) and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed
Competitive Sperm-Marked Beetles for Monitoring Approaches in Genetic Biocontrol and Studies in Reproductive Biology
Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent proteins during spermatogenesis. The homozygous lines established by transgenesis approaches are going through a genetic bottleneck that can lead to reduced fitness. Transgenic SIT approaches have mostly focused on Dipteran and Lepidopteran pests so far. With this study, we provide sperm-marked lines for the Coleopteran pest model organism, the red flour beetle Tribolium castaneum, based on the β2-tubulin promoter/enhancer driving red (DsRed) or green (EGFP) fluorescence. The obtained lines are reasonably competitive and were thus used for our studies on reproductive biology, confirming the phenomenon of ‘last-male sperm precedence’ and that the spermathecae are deployed for long-term sperm storage, enabling the use of sperm from first mating events even after secondary mating events for a long period of time. The homozygosity and competitiveness of the lines will enable future studies to analyze the controlled process of sperm movement into the long-term storage organ as part of a post-mating cryptic female choice mechanism of this extremely promiscuous species.Evangelisches Studienwerk e.V., Villigst, GermanyUniversity of Calabar, NigeriaErasmus Mundus Action 2German Academic Exchange Service (DAAD
Phytoremediation of atmospheric pollutants in the era of climate change
It is now widely recognized that natural vegetation and many economically important crop species are significantly harmed by a variety of compounds that are found in the atmosphere in the form of pollutants. These pollutants are the result of anthropomorphic actions, which lead to increasing concentrations of harmful chemicals in the atmosphere. These include oxides of sulfur and nitrogen, ozone (O 3), volatile organic compounds (VOCs), carbon monoxide, fluorides, and organic particulate matter (PM). With regard to the effect of these chemicals on crops and other vegetable species, the amount and type of damage depend on the concentration of gaseous pollutants in the atmosphere, the duration of the exposure time for the crops, and the nature of the growing season. Furthermore, the genotype of the plant governs the extent of damage caused by these atmospheric pollutants and can result in either acute or chronic damage. Polluting chemical contaminants have a variety of direct impacts on vegetation, which can include the plants' heat exchange parameters, together with their biological properties, antimicrobial activities, gene functions, and yielding characteristics. In addition, they frequently show modifications to the foliar structure and photosynthetic processes, which can cause an increase in the emission of reactive oxygen species, which are harmful to the plants' biological, physiological, and biochemical processes. These species can include hydroxyl radicals, singlet oxygen, and hydrogen peroxide, and, consequently, the health of crops, for example, will require remedial action, such as the neutralization of free radicals by the formation and coordinated action of enzymatic and nonenzymatic antioxidants. In order to contribute to such remediation processes, this chapter has focused on these air pollutants and their impact on vital physiological functions such as photosynthesis, respiration, carbon allocation, and the stomatal function of plants. © The Author(s). All rights reserved
Competitive Sperm-Marked Beetles for Monitoring Approaches in Genetic Biocontrol and Studies in Reproductive Biology
Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent proteins during spermatogenesis. The homozygous lines established by transgenesis approaches are going through a genetic bottleneck that can lead to reduced fitness. Transgenic SIT approaches have mostly focused on Dipteran and Lepidopteran pests so far. With this study, we provide sperm-marked lines for the Coleopteran pest model organism, the red flour beetle Tribolium castaneum, based on the β2-tubulin promoter/enhancer driving red (DsRed) or green (EGFP) fluorescence. The obtained lines are reasonably competitive and were thus used for our studies on reproductive biology, confirming the phenomenon of ‘last-male sperm precedence’ and that the spermathecae are deployed for long-term sperm storage, enabling the use of sperm from first mating events even after secondary mating events for a long period of time. The homozygosity and competitiveness of the lines will enable future studies to analyze the controlled process of sperm movement into the long-term storage organ as part of a post-mating cryptic female choice mechanism of this extremely promiscuous species
Knowledge, Attitudes and Perceptions towards COVID-19 Vaccinations: A Cross-Sectional Survey in Pakistan
Background and Objectives: Several vaccines have been approved for the prevention of the coronavirus disease, discovered on 31 December in Wuhan, China. Pakistan procured vaccines from various countries. However, the lack of knowledge and reluctance of the general population to embrace the use of the vaccines are considered to be the major determinant of the slow vaccination rate. Hence, it is necessary to evaluate the willingness of the general population about their perception of the COVID-19 vaccination. Materials and Methods: A cross sectional survey based on a self-structured questionnaire comprising 18 questions was conducted (from 21 April–21 June) on 400 Pakistani participants to evaluate their knowledge, attitude, and perception towards the COVID-19 vaccination. Chi-square independent t-test and one-way Anova including a multiple step wise linear regression were used to draw conclusions about the results. p < 0.05 was considered significant. Results: A total of 400 participants responded in the knowledge, attitude, and perception (KAP) survey of which 46.5% were female and 53.5% were male. The mean age of participants was 36.08 years. This survey showed a poor knowledge (50.5%), a fair attitude (75.1%) and a poor perception (58.1%) towards the COVID-19 vaccination. Higher mean knowledge and attitude scores were reported in the age group 21–40, females, and unmarried urban citizens. Regression analysis showed that age, education, residence, and employment status influenced the knowledge and perception score to a considerable extent. Conclusions: The findings reflect an inadequate knowledge and perception on the one hand, but a better attitude towards the COVID-19 vaccination. This knowledge attitude and perception (KAP) survey will help in better understanding the opinion of the general population towards vaccination, and will be useful for policy makers and health care authorities aiming to increase the vaccination rate.</jats:p
