1,134 research outputs found
Orbital evolution under the action of fast interstellar gas flow with non-constant drag coefficient
The acceleration of a spherical dust particle caused by an interstellar gas
flow depends on the drag coefficient which is, for the given particle and flow
of interstellar gas, a specific function of the relative speed of the dust
particle with respect to the interstellar gas. We investigate the motion of a
dust particle in the case when the acceleration caused by the interstellar gas
flow represent a small perturbation to the gravity of a central star. We
present the secular time derivatives of the Keplerian orbital elements of the
dust particle under the action of the acceleration from the interstellar gas
flow for arbitrary orbit orientation. The semimajor axis of the dust particle
is a decreasing function of time for an interstellar gas flow acceleration with
constant drag coefficient and also for such an acceleration with the linearly
variable drag coefficient. The decrease of the semimajor axis is slower for the
interstellar gas flow acceleration with the variable drag coefficient. The
minimal and maximal values of the decrease of the semimajor axis are
determined. In the planar case, when the interstellar gas flow velocity lies in
the orbital plane of the particle, the orbit always approaches the position
with the maximal value of the transversal component of the interstellar gas
flow velocity vector measured at perihelion.
The properties of the orbital evolution derived from the secular time
derivatives are consistent with numerical integrations of the equation of
motion. If the interstellar gas flow speed is much larger than the speed of the
dust particle, then the linear approximation of dependence of the drag
coefficient on the relative speed of the dust particle with respect to the
interstellar gas is usable for practically arbitrary (no close to zero) values
of the molecular speed ratios (Mach numbers).Comment: 12 pages, 6 figures, 2 equations added in v
Securing recruitment and obtaining informed consent in minority ethnic groups in the UK
Background: Previous health research has often explicitly excluded individuals from minority
ethnic backgrounds due to perceived cultural and communication difficulties, including studies
where there might be language/literacy problems in obtaining informed consent. This study
addressed these difficulties by developing audio-recorded methods of obtaining informed consent
and recording data. This report outlines 1) our experiences with securing recruitment to a
qualitative study investigating alternative methods of data collection, and 2) the development of a
standardised process for obtaining informed consent from individuals from minority ethnic
backgrounds whose main language does not have an agreed written form.
Methods: Two researchers from South Asian backgrounds recruited adults with Type 2 diabetes
whose main language was spoken and not written, to attend a series of focus groups. A screening
tool was used at recruitment in order to assess literacy skills in potential participants. Informed
consent was obtained using audio-recordings of the patient information and recording patients'
verbal consent. Participants' perceptions of this method of obtaining consent were recorded.
Results: Recruitment rates were improved by using telephone compared to face-to-face methods.
The screening tool was found to be acceptable by all potential participants. Audio-recorded
methods of obtaining informed consent were easy to implement and accepted by all participants.
Attrition rates differed according to ethnic group. Snowballing techniques only partly improved
participation rates.
Conclusion: Audio-recorded methods of obtaining informed consent are an acceptable
alternative to written consent in study populations where literacy skills are variable. Further
exploration of issues relating to attrition is required, and a range of methods may be necessary in
order to maximise response and participation
Oxidation Stability of Fatty Acid Methyl Ester under Three Different Conditions
Maintaining fuel stability is one important criterion in sustaining the quality of fuels. This research investigated the production of biodiesel from waste groundnut oil and the oxidation stability of the biodiesel samples stored under three conditions (a vacuum, a fridge and an exposure to atmosphere) by considering their saponification values, percentage of free fatty acid, peroxide values, iodine values and viscosity. Maximum biodiesel yield was obtained at 9 methanol/oil mole ratio, 1.0w/w%Oil KOH catalyst concentration, reaction time of 60 minutes and reaction temperature of 60 0C. The results showed that biodiesel oxidation stability is adversely affected by increase in saponification value, percentage of free fatty acid, peroxide value; and decrease in iodine value and viscosity. Also, the results of these physico-chemical properties shows that vacuum is the most favourable storage condition, compared to freezing and atmospheric conditions. Keywords: Atmosphere, Biodiesel, Refrigerator, Trans-esterification, Vacuu
De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
Collisional and Radiative Processes in Optically Thin Plasmas
Most of our knowledge of the physical processes in distant plasmas is obtained
through measurement of the radiation they produce. Here we provide an overview of the
main collisional and radiative processes and examples of diagnostics relevant to the microphysical
processes in the plasma. Many analyses assume a time-steady plasma with ion
populations in equilibrium with the local temperature and Maxwellian distributions of particle
velocities, but these assumptions are easily violated in many cases. We consider these
departures from equilibrium and possible diagnostics in detail
Probiotic Lactobacillus and Bifidobacterium Strains Counteract Adherent-Invasive Escherichia coli (AIEC) Virulence and Hamper IL-23/Th17 Axis in Ulcerative Colitis, but Not in Crohn's Disease
Hypersecretion of proinflammatory cytokines and dysregulated activation of the IL-23/Th17 axis in response to intestinal microbiota dysbiosis are key factors in the pathogenesis of inflammatory bowel diseases (IBD). In this work, we studied how Lactobacillus and Bifidobacterium strains affect AIEC-LF82 virulence mechanisms and the consequent inflammatory response linked to the CCR6-CCL20 and IL-23/Th17 axes in Crohn's disease (CD) and ulcerative colitis (UC) patients. All Lactobacillus and Bifidobacterium strains significantly reduced the LF82 adhesion and persistence within HT29 intestinal epithelial cells, inhibiting IL-8 secretion while not affecting the CCR6-CCL20 axis. Moreover, they significantly reduced LF82 survival within macrophages and dendritic cells, reducing the secretion of polarizing cytokines related to the IL-23/Th17 axis, both in healthy donors (HD) and UC patients. In CD patients, however, only B. breve Bbr8 strain was able to slightly reduce the LF82 persistence within dendritic cells, thus hampering the IL-23/Th17 axis. In addition, probiotic strains were able to modulate the AIEC-induced inflammation in HD, reducing TNF-\u3b1 and increasing IL-10 secretion by macrophages, but failed to do so in IBD patients. Interestingly, the probiotic strains studied in this work were all able to interfere with the IL-23/Th17 axis in UC patients, but not in CD patients. The different interaction mechanisms of probiotic strains with innate immune cells from UC and CD patients compared to HD suggest that testing on CD-derived immune cells may be pivotal for the identification of novel probiotic strains that could be effective also for CD patients
Snout Shape in Extant Ruminants
Copyright: © 2014 Tennant, MacLeod. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article
Make some noise: reliable and efficient single-step adversarial training
Recently, Wong et al. (2020) showed that adversarial training with single-step FGSM leads to a characteristic failure mode named catastrophic overfitting (CO), in which a model becomes suddenly vulnerable to multi-step attacks. Experimentally they showed that simply adding a random perturbation prior to FGSM (RS-FGSM) could prevent CO. However, Andriushchenko & Flammarion (2020) observed that RS-FGSM still leads to CO for larger perturbations, and proposed a computationally expensive regularizer (GradAlign) to avoid it. In this work, we methodically revisit the role of noise and clipping in single-step adversarial training. Contrary to previous intuitions, we find that using a stronger noise around the clean sample combined with \textit{not clipping} is highly effective in avoiding CO for large perturbation radii. We then propose Noise-FGSM (N-FGSM) that, while providing the benefits of single-step adversarial training, does not suffer from CO. Empirical analyses on a large suite of experiments show that N-FGSM is able to match or surpass the performance of previous state of-the-art GradAlign while achieving 3× speed-up
Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.
BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation
- …
