360 research outputs found

    Pointing-error simulations of the DSS-13 antenna due to wind disturbances

    Get PDF
    Accurate spacecraft tracking by the NASA Deep Space Network (DSN) antennas must be assured during changing weather conditions. Wind disturbances are the main source of tracking errors. The development of a wind-force model and simulations of wind-induced pointing errors of DSN antennas are presented. The antenna model includes the antenna structure, the elevation and azimuth servos, and the tracking controller. Simulation results show that pointing errors due to wind gusts are of the same order as errors due to static wind pressure and that these errors (similar to those of static wind pressure) satisfy the velocity quadratic law. The presented methodology is used for wind-disturbance estimation and for the design of an antenna controller with wind-disturbance rejection properties

    Use of Biological Motion based Cues and Ecological Sounds in the Neurorehabilitation of Apraxia

    Full text link
    Technological progress in the area of informatics and human interface platforms create a window of opportunities for the neurorehablitation of patients with motor impairments. The CogWatch project (www.cogwatch.eu) aims to create an intelligent assistance system to improve motor planning and execution in patients with apraxia during their daily activities. Due to the brain damage caused by cardiovascular incident these patients suffer from impairments in the ability to use tools, and to sequence actions during daily tasks (such as making breakfast). Based on the common coding theory (Hommel et al., 2001) and mirror neuron primate research (Rizzolatti et al., 2001) we aim to explore use of cues, which incorporate aspects of biological motion from healthy adults performing everyday tasks requiring tool use and ecological sounds linked to the action goal. We hypothesize that patients with apraxia will benefit from supplementary sensory information relevant to the task, which will reinforce the selection of the appropriate motor plan. Findings from this study determine the type of sensory guidance in the CogWatch interface. Rationale for the experimental design is presented and the relevant literature is discussed

    Wind-tunnel study of roofblok ballast block for high winds

    Get PDF
    Early draft.CER86-87BB-RNM-14.CSU Project 2-96960.January 1987.Includes bibliographical references (page 12)

    Evolution of the RNA polymerase II C-terminal domain

    Get PDF
    In recent years a great deal of biochemical and genetic research has focused on the C-terminal domain (CTD) of the largest subunit (RPB1) of DNA-dependent RNA polymerase II. This strongly conserved domain of tandemly repeated heptapeptides has been linked functionally to important steps in the initiation and processing of mRNA transcripts in both animals and fungi. Although they are absolutely required for viability in these organisms, C-terminal tandem repeats do not occur in RPB1 sequences from diverse eukaryotic taxa. Here we present phylogenetic analyses of RPB1 sequences showing that canonical CTD heptads are strongly conserved in only a subset of eukaryotic groups, all apparently descended from a single common ancestor. Moreover, eukaryotic groups in which the most complex patterns of ontogenetic development occur are descended from this CTD-containing ancestor. Consistent with the results of genetic and biochemical investigations of CTD function, these analyses suggest that the enhanced control over RNA polymerase II transcription conveyed by acquired CTD protein interactions was an important step in the evolution of intricate patterns of gene expression that are a hallmark of large, developmentally complex eukaryotic organisms. Originally published Proc Natl Acad Sci, Vol. 99, No. 9, Apr 200

    The reality of virtual limbs: does mirror technique for hand has functional consequences for the motor output?

    Get PDF
    Motor imagery was proven to excite the motor cortex as actual action execution. Therefore, motor imagery training was suggested as a method of facilitating the rehabilitation of the paretic limbs following stroke. Objective. To investigate whether motor imagery brings objectively measurable effects on the motor behaviour, and whether these effects can be enhanced by the application of the mirror technique. Three experiments were conducted involving 32 neurologically healthy participants, with strong right-handedness. Motor imagery simulation of the bimanual movement induced similar changes in terms of temporal precision as overt motor execution. The mid-sagittal mirror technique increased the subjective kinaesthetic and visual vividness of the motor imagery. The source of the observed changes in motor parameters under motor imagery conditions was identified to be different during bimanual conditions. Further investigations need to be conducted to examine the mechanisms underlying observed patterns of results

    Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation.

    Get PDF
    Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity

    Wind-tunnel study of Four Allen Center, Houston

    Get PDF
    May 1982.For Century Development Corporation.CER81-82JAP-JEC-BB-DWB66.Includes bibliographical references (pages 36-37).CSU Projects 2-27840 and 2-27940

    Drag force on microwave antenna

    Get PDF
    CER83-84JEC-JAP-BB-NH29.CSU Project 2-95380.For Gabrial Electronics, Inc.Includes bibliographical references (page 7).December 1983

    Tool selection and the ventral‐dorsal organization of tool‐related knowledge

    Get PDF
    Tool selection is a cognitive process necessary for tool use, and may rely on distinct knowledge under different conditions. This fMRI experiment was designed to identify neural substrates mediating tool selection under different conditions. Participants performed a picture‐matching task that presented a recipient object and an action‐goal, and required the selection of the best tool object from among four candidates. Some trials allowed selection of the prototypical tool, whereas others forced selection of either a functionally substitutable or impossible tool. Statistical contrasts revealed significantly different activation between Proto and Sub conditions in frontal, parietal, and temporal lobes. The middle temporal gyrus (MTG) bilaterally, and the right posterior cingulate were more strongly activated by prototypical tool selection, and left inferior parietal lobule (IPL), intraparietal sulcus (IPS), middle frontal gyrus, and precuneus were more strongly activated when selecting substitutable objects. These findings are concordant with previous neuroimaging studies of tool use knowledge in demonstrating that activation of the MTG represents functional knowledge for conventional tool usage, and activation of the IPL/IPS supports action (i.e., praxic) knowledge representations. These results contribute to the literature that dissociates the roles of ventral and dorsal streams in tool‐related knowledge and behavior, and emphasize the role of the left hemisphere for processing goal‐directed object interactions

    The complexity of the relationship between neuropsychological deficits and impairment in everyday tasks after stroke

    Get PDF
    Background and purpose: A large body of research reports that stroke patients are debilitated in terms of daily independence after dismissal from the hospital unit. Patients struggle with the use of daily objects or performing complex actions. Differences between individual deficits of patients are often associated with the site of the brain damage. However, clinical studies suggest that patients exhibit varied constellations of action-associated difficulties and neuropsychological deficits. There is a lack of conclusive evidence indicating how different neuropsychological symptoms link to the impaired ability to perform activities of daily living (ADL). Materials and methods: To further address this matter, in this study we compared the behavior of patients with left brain damage (LBD) and right brain damage (RBD) following stroke in two naturalistic task scenarios (tea making and document filing),and compared the committed action errors to the neuropsychological screening results. Results: We observed mild to severe impairments in both the LBD and RBD groups amounting to 37-55% of failure rate in attainment of action goal. Interestingly, the performance on both tasks was not correlated to each other, suggesting that the tasks involved a different set of higher cognitive functions. Despite similar behavioral manifestations, in the LBD group poor task performance was related to deficits in praxis performance and unilateral tactile and visual extinction. The presence of aphasia did not correlate with task performance, except for a link between low scores in Aachen aphasia test scales and misestimation error in the tea making task. In the RBD group, difficulties with performance were primarily linked to deficit in praxis and unilateral visual extinction. Conclusions: Despite similar behavior, the underlying mechanisms of the deficits after stroke might be different (in patients with LBD and RBD) and reveal complex interlinks of cognitive networks involved in the ability to carry on everyday tasks
    corecore