703 research outputs found
Correlated Lightning Mapping Array (LMA) and Radar Observations of the Initial Stages of Florida Triggered Lightning Discharges
We characterize the geometrical and electrical characteristics of the initial stages of nine Florida triggered lightning discharges using a Lightning Mapping Array (LMA), a C-band SMART radar, and measured channel-base currents. We determine initial channel and subsequent branch lengths, average initial channel and branch propagation speeds, and channel-base current at the time of each branch initiation. The channel-base current is found to not change significantly when branching occurs, an unexpected result. The initial stage of Florida triggered lightning typically transitions from vertical to horizontal propagation at altitudes of 3-6 km, near the typical 0 C level of 4-5 km and several kilometers below the expected center of the negative cloud-charge region at 7-8 km. The data presented potentially provide information on thunderstorm electrical and hydrometeor structure and discharge propagation physics. LMA source locations were obtained from VHF sources of positive impulsive currents as small as 10 A, in contrast to expectations found in the literature
Two-photon quantum walks in an elliptical direct-write waveguide array
Integrated optics provides an ideal test bed for the emulation of quantum
systems via continuous-time quantum walks. Here we study the evolution of
two-photon states in an elliptic array of waveguides. We characterise the
photonic chip via coherent-light tomography and use the results to predict
distinct differences between temporally indistinguishable and distinguishable
two-photon inputs which we then compare with experimental observations. Our
work highlights the feasibility for emulation of coherent quantum phenomena in
three-dimensional waveguide structures.Comment: 8 pages, 7 figure
Generic Model Refactorings
Many modeling languages share some common concepts and principles. For example, Java, MOF, and UML share some aspects of the concepts\ud
of classes, methods, attributes, and inheritance. However, model\ud
transformations such as refactorings specified for a given language\ud
cannot be readily reused for another language because their related\ud
metamodels may be structurally different. Our aim is to enable a\ud
flexible reuse of model transformations across various metamodels.\ud
Thus, in this paper, we present an approach allowing the specification\ud
of generic model transformations, in particular refactorings, so\ud
that they can be applied to different metamodels. Our approach relies\ud
on two mechanisms: (1) an adaptation based mainly on the weaving\ud
of aspects; (2) the notion of model typing, an extension of object\ud
typing in the model-oriented context. We validated our approach by\ud
performing some experiments that consisted of specifying three well\ud
known refactorings (Encapsulate Field, Move Method, and Pull Up Method)\ud
and applying each of them onto three different metamodels (Java,\ud
MOF, and UML)
Audience responses to representations of family-assisted suicide on British television
Reflecting on different generic conventions, this study highlights the strengths and weaknesses of documentaries and soap operas in addressing the societal and the personal dimensions of family-assisted suicide. Based on an analysis of YouTube user comments, this study compares how audience members respond to representations of family-assisted suicide in British documentaries and soap operas broadcast between 2010 and 2016. The thematic analysis of comments shows key differences between audience engagement with factual and fictional representations. Markers of a political engagement with this sensitive social issue occur more frequently in comments on documentaries than in comments on soap operas. Comments on soap operas are frequently expressions of emotion, or displays of specialist soap opera knowledge
Optical one-way quantum computing with a simulated valence-bond solid
One-way quantum computation proceeds by sequentially measuring individual
spins (qubits) in an entangled many-spin resource state. It remains a
challenge, however, to efficiently produce such resource states. Is it possible
to reduce the task of generating these states to simply cooling a quantum
many-body system to its ground state? Cluster states, the canonical resource
for one-way quantum computing, do not naturally occur as ground states of
physical systems. This led to a significant effort to identify alternative
resource states that appear as ground states in spin lattices. An appealing
candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb,
and Tasaki (AKLT). It is the unique, gapped ground state for a two-body
Hamiltonian on a spin-1 chain, and can be used as a resource for one-way
quantum computing. Here, we experimentally generate a photonic AKLT state and
use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc
Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012DC3 study
Quantum-inspired interferometry with chirped laser pulses
We introduce and implement an interferometric technique based on chirped
femtosecond laser pulses and nonlinear optics. The interference manifests as a
high-visibility (> 85%) phase-insensitive dip in the intensity of an optical
beam when the two interferometer arms are equal to within the coherence length
of the light. This signature is unique in classical interferometry, but is a
direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits
all the metrological advantages of the quantum interferometer, but with signals
at least 10^7 times greater. In particular we demonstrate enhanced resolution,
robustness against loss, and automatic dispersion cancellation. Our
interferometer offers significant advantages over previous technologies, both
quantum and classical, in precision time delay measurements and biomedical
imaging.Comment: 6 pages, 4 figure
Quantum computing with mixed states
We discuss a model for quantum computing with initially mixed states.
Although such a computer is known to be less powerful than a quantum computer
operating with pure (entangled) states, it may efficiently solve some problems
for which no efficient classical algorithms are known. We suggest a new
implementation of quantum computation with initially mixed states in which an
algorithm realization is achieved by means of optimal basis independent
transformations of qubits.Comment: 2 figures, 52 reference
Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge
Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)
- …
