6,022 research outputs found
Development, fabrication and test of a high purity silica heat shield
A highly reflective hyperpure ( 25 ppm ion impurities) slip cast fused silica heat shield material developed for planetary entry probes was successfully scaled up. Process development activities for slip casting large parts included green strength improvements, casting slip preparation, aggregate casting, strength, reflectance, and subscale fabrication. Successful fabrication of a one-half scale Saturn probe (shape and size) heat shield was accomplished while maintaining the silica high purity and reflectance through the scale-up process. However, stress analysis of this original aggregate slip cast material indicated a small margin of safety (MS. = +4%) using a factor of safety of 1.25. An alternate hyperpure material formulation to increase the strength and toughness for a greater safety margin was evaluated. The alternate material incorporates short hyperpure silica fibers into the casting slip. The best formulation evaluated has a 50% by weight fiber addition resulting in an 80% increase in flexural strength and a 170% increase in toughness over the original aggregate slip cast materials with comparable reflectance
Parsec-scale HI absorption structure in a low-redshift galaxy seen against a Compact Symmetric Object
We present global VLBI observations of the 21-cm transition of atomic
hydrogen seen in absorption against the radio source J0855+5751. The foreground
absorber (SDSS~J085519.05+575140.7) is a dwarf galaxy at = 0.026. As the
background source is heavily resolved by VLBI, the data allow us to map the
properties of the foreground HI gas with a spatial resolution of 2pc. The
absorbing gas corresponds to a single coherent structure with an extent
35pc, but we also detect significant and coherent variations, including a
change in the HI optical depth by a factor of five across a distance of
6pc. The large size of the structure provides support for the Heiles &
Troland model of the ISM, as well as its applicability to external galaxies.
The large variations in HI optical depth also suggest that caution should be
applied when interpreting measurements from radio-detected DLAs. In
addition, the distorted appearance of the background radio source is indicative
of a strong jet-cloud interaction in its host galaxy. We have measured its
redshift ( = 0.54186) using optical spectroscopy on the William Herschel
Telescope and this confirms that J0855+5751 is a FRII radio source with a
physical extent of 1kpc and supports the previous identification of this
source as a Compact Symmetric Object. These sources often show absorption
associated with the host galaxy and we suggest that both HI and OH should be
searched for in J0855+5751.Comment: 14 pages and 10 figures. Accepted for publication in MNRA
Functional centrality in graphs
In this paper we introduce the functional centrality as a generalization of
the subgraph centrality. We propose a general method for characterizing nodes
in the graph according to the number of closed walks starting and ending at the
node. Closed walks are appropriately weighted according to the topological
features that we need to measure
Assessing the importance of a self-generated detachment process in river biofilm models
1. Epilithic biofilm biomass was measured for 14 months in two sites, located up- and downstream of the city of Toulouse in the Garonne River (south-west France). Periodical sampling provided a biomass data set to compare with simulations from the model of Uehlinger, Bürher and Reichert (1996: Freshwater Biology, 36, 249–263.), in order to evaluate the impact of hydraulic disturbance.
2. Despite differences in application conditions (e.g. river size, discharge, frequency of disturbance), the base equation satisfactorily predicted biomass between low and high water periods of the year, suggesting that the flood disturbance regime may be considered a universal mechanism controlling periphyton biomass.
3. However modelling gave no agreement with biomass dynamics during the 7-month long low water period that the river experienced. The influence of other biomass-regulating factors (temperature, light and soluble reactive phosphorus) on temporal biomass dynamics was weak.
4. Implementing a supplementary mechanism corresponding to a temperature-dependent self-generated loss because of heterotrophic processes allowed us to accurately reproduce the observed pattern: a succession of two peaks. This case study suggests that during typical summer low water periods (flow stability and favourable temperature) river biofilm modelling requires self-generated detachment to be considered
Activation of the pro-resolving receptor Fpr2 attenuates inflammatory microglial activation
Poster number: P-T099
Theme: Neurodegenerative disorders & ageing
Activation of the pro-resolving receptor Fpr2 reverses inflammatory microglial activation
Authors: Edward S Wickstead - Life Science & Technology University of Westminster/Queen Mary University of London
Inflammation is a major contributor to many neurodegenerative disease (Heneka et al. 2015). Microglia, as the resident immune cells of the brain and spinal cord, provide the first line of immunological defence, but can become deleterious when chronically activated, triggering extensive neuronal damage (Cunningham, 2013). Dampening or even reversing this activation may provide neuronal protection against chronic inflammatory damage. The aim of this study was to determine whether lipopolysaccharide (LPS)-induced inflammation could be abrogated through activation of the receptor Fpr2, known to play an important role in peripheral inflammatory resolution. Immortalised murine microglia (BV2 cell line) were stimulated with LPS (50ng/ml) for 1 hour prior to the treatment with one of two Fpr2 ligands, either Cpd43 or Quin-C1 (both 100nM), and production of nitric oxide (NO), tumour necrosis factor alpha (TNFα) and interleukin-10 (IL-10)
were monitored after 24h and 48h. Treatment with either Fpr2 ligand significantly suppressed LPS-induced production of NO or TNFα after both 24h and 48h exposure, moreover Fpr2 ligand treatment significantly enhanced production of IL-10 48h post-LPS treatment. As we have previously shown Fpr2 to be coupled to a number of intracellular signaling pathways (Cooray et al. 2013), we investigated potential signaling
responses. Western blot analysis revealed no activation of ERK1/2, but identified a rapid and potent activation of p38 MAP kinase in BV2 microglia following stimulation with Fpr2 ligands. Together, these data indicate the possibility of exploiting immunomodulatory strategies for the treatment of neurological diseases, and highlight in particular the important potential of resolution mechanisms as novel therapeutic targets in neuroinflammation.
References
Cooray SN et al. (2013). Proc Natl Acad Sci U S A 110: 18232-7.
Cunningham C (2013). Glia 61: 71-90.
Heneka MT et al. (2015). Lancet Neurol 14: 388-40
Multi-Omic Profiling of Melophlus Sponges Reveals Diverse Metabolomic and Microbiome Architectures that Are Non-overlapping with Ecological Neighbors.
Marine sponge holobionts, defined as filter-feeding sponge hosts together with their associated microbiomes, are prolific sources of natural products. The inventory of natural products that have been isolated from marine sponges is extensive. Here, using untargeted mass spectrometry, we demonstrate that sponges harbor a far greater diversity of low-abundance natural products that have evaded discovery. While these low-abundance natural products may not be feasible to isolate, insights into their chemical structures can be gleaned by careful curation of mass fragmentation spectra. Sponges are also some of the most complex, multi-organismal holobiont communities in the oceans. We overlay sponge metabolomes with their microbiome structures and detailed metagenomic characterization to discover candidate gene clusters that encode production of sponge-derived natural products. The multi-omic profiling strategy for sponges that we describe here enables quantitative comparison of sponge metabolomes and microbiomes to address, among other questions, the ecological relevance of sponge natural products and for the phylochemical assignment of previously undescribed sponge identities
Analytic estimates and topological properties of the weak stability boundary
The weak stability boundary (WSB) is the transition region of the phase space where the change from gravitational escape to ballistic capture occurs. Studies on this complicated region of chaotic motion aim to investigate its unique, fuel saving properties to enlarge the frontiers of low energy transfers. This “fuzzy stability” region is characterized by highly sensitive motion, and any analysis of it has been carried out almost exclusively using numerical methods. On the contrary this paper presents, for the planar circular restricted 3 body problem (PCR3BP), 1) an analytic definition of the WSB which is coherent with the known algorithmic definitions; 2) a precise description of the topology of the WSB; 3) analytic estimates on the “stable region” (nearby the smaller primary) whose boundary is, by definition, the WSB
Thermal X-rays from Millisecond Pulsars: Constraining the Fundamental Properties of Neutron Stars
Abridged) We model the X-ray properties of millisecond pulsars (MSPs) by
considering hot spot emission from a weakly magnetized rotating neutron star
(NS) covered by an optically-thick hydrogen atmosphere. We investigate the
limitations of using the thermal X-ray pulse profiles of MSPs to constrain the
mass-to-radius () ratio of the underlying NS. The accuracy is strongly
dependent on the viewing angle and magnetic inclination. For certain systems,
the accuracy is ultimately limited only by photon statistics implying that
future X-ray observatories could, in principle, achieve constraints on
and hence the NS equation of state to better than 5%. We demonstrate that
valuable information regarding the basic properties of the NS can be extracted
even from X-ray data of fairly limited photon statistics through modeling of
archival spectroscopic and timing observations of the nearby isolated PSRs
J0030+0451 and J2124--3358. The X-ray emission from these pulsars is consistent
with the presence of a hydrogen atmosphere and a dipolar magnetic field
configuration, in agreement with previous findings for PSR J0437--4715. For
both MSPs, the favorable geometry allows us to place interesting limits on the
allowed of NSs. Assuming 1.4 M, the stellar radius is
constrained to be km and km (68% confidence) for PSRs
J0030+0451 and J2124--3358, respectively. We explore the prospects of using
future observatories such as \textit{Constellation-X} and \textit{XEUS} to
conduct blind X-ray timing searches for MSPs not detectable at radio
wavelengths due to unfavorable viewing geometry. Using the observational
constraints on the pulsar obliquities we are also able to place strong
constraints on the magnetic field evolution model proposed by Ruderman.Comment: 9 pages, 7 figures, published in the Astrophysical Journal (Volume
689, Issue 1, pp. 407-415
- …
