141 research outputs found

    The need of dermatologists, psychiatrists and psychologists joint care in psychodermatology

    Get PDF
    The mind-skin connection has been studied since the nineteenth century. The last 40 years have set the development of new research areas which allowed the clarifying of how these two dimensions interact. The diseases that involve skin and mind constitute the field of psychodermatology and require that specialists in dermatology, psychiatry and psychology together and integrated take part in it, since skin, nervous system and mind are simultaneously affected. This paper aims to expose how psychodermatoses are currently conceptualized and the need of integration of these three specialties for conveniently treating the patients

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    Production of Native Bispecific Antibodies in Rabbits

    Get PDF
    BACKGROUND: A natural bispecific antibody, which can be produced by exchanging Fab arms of two IgG4 molecules, was first described in allergic patients receiving therapeutic injections with two distinct allergens. However, no information has been published on the production of natural bispecific antibody in animals. Even more important, establishment of an animal model is a useful approach to investigate and characterize the naturally occurring antibody. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that a natural bispecific antibody can also be generated in New Zealand white rabbits by immunization with synthesized conjugates. These antibodies showed bispecificity to the components that were simultaneously used to immunize the animals. We observed a trend in our test animals that female rabbits exhibited stronger bispecific antibody responses than males. The bispecific antibody was monomeric and primarily belonged to immunoglobulin (Ig) G. Moreover, bispecific antibodies were demonstrated by mixing 2 purified monospecific antibodies in vivo and in vitro. CONCLUSIONS/SIGNIFICANCE: Our results extend the context of natural bispecific antibodies on the basis of bispecific IgG4, and may provide insights into the exploration of native bispecific antibodies in immunological diseases

    Birth Weight and Adult IQ, but Not Anxious-Depressive Psychopathology, Are Associated with Cortical Surface Area: A Study in Twins

    Get PDF
    BACKGROUND: Previous research suggests that low birth weight (BW) induces reduced brain cortical surface area (SA) which would persist until at least early adulthood. Moreover, low BW has been linked to psychiatric disorders such as depression and psychological distress, and to altered neurocognitive profiles. AIMS: We present novel findings obtained by analysing high-resolution structural MRI scans of 48 twins; specifically, we aimed: i) to test the BW-SA association in a middle-aged adult sample; and ii) to assess whether either depression/anxiety disorders or intellectual quotient (IQ) influence the BW-SA link, using a monozygotic (MZ) twin design to separate environmental and genetic effects. RESULTS: Both lower BW and decreased IQ were associated with smaller total and regional cortical SA in adulthood. Within a twin pair, lower BW was related to smaller total cortical and regional SA. In contrast, MZ twin differences in SA were not related to differences in either IQ or depression/anxiety disorders. CONCLUSION: The present study supports findings indicating that i) BW has a long-lasting effect on cortical SA, where some familial and environmental influences alter both foetal growth and brain morphology; ii) uniquely environmental factors affecting BW also alter SA; iii) higher IQ correlates with larger SA; and iv) these effects are not modified by internalizing psychopathology.This work was supported by the Spanish SAF2008-05674, European Twins Study Network on Schizophrenia Research Training Network (grant number EUTwinsS; MRTN-CT-2006-035987), the Catalan 2014SGR1636 and the PIM2010-ERN- 00642 in frame of ERA-NET NEURON. A. Córdova- Palomera was funded by The National Council for Science and Technology (CONACyT, Mexico). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Impaired Executive Function Mediates the Association between Maternal Pre-Pregnancy Body Mass Index and Child ADHD Symptoms

    Get PDF
    Increasing evidence suggests exposure to adverse conditions in intrauterine life may increase the risk of developing attention-deficit/hyperactivity disorder (ADHD) in childhood. High maternal pre-pregnancy body mass index (BMI) has been shown to predict child ADHD symptoms, however the neurocognitive processes underlying this relationship are not known. The aim of the present study was to test the hypothesis that this association is mediated by alterations in child executive function.A population-based cohort of 174 children (mean age = 7.3 ± 0.9 (SD) yrs, 55% girls) was evaluated for ADHD symptoms using the Child Behavior Checklist, and for neurocognitive function using the Go/No-go task. This cohort had been followed prospectively from early gestation and birth through infancy and childhood with serial measures of maternal and child prenatal and postnatal factors. Maternal pre-pregnancy BMI was a significant predictor of child ADHD symptoms (F((1,158)) = 4.80, p = 0.03) and of child performance on the Go/No-go task (F((1,157)) = 8.37, p = 0.004) after controlling for key potential confounding variables. A test of the mediation model revealed that the association between higher maternal pre-pregnancy BMI and child ADHD symptoms was mediated by impaired executive function (inefficient/less attentive processing; Sobel Test: t = 2.39 (± 0.002, SEM), p = 0.02).To the best of our knowledge this is the first study to report that maternal pre-pregnancy BMI-related alterations in child neurocognitive function may mediate its effects on ADHD risk. The finding is clinically significant and may extrapolate to an approximately 2.8-fold increase in the prevalence of ADHD among children of obese compared to those of non-obese mothers. These results add further evidence to the growing awareness that neurodevelopmental disorders such as ADHD may have their foundations very early in life

    Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury

    Full text link
    BACKGROUND: Human amnion epithelial cells (hAECs) are clonogenic and have been proposed to reduce inflammatory-induced tissue injury. Perturbation of the immune response is implicated in the pathogenesis of perinatal brain injury; modulating this response could thus be a novel therapy for treating or preventing such injury. The immunomodulatory properties of hAECs have been shown in other animal models, but a detailed investigation of the effects on brain immune cells following injury has not been undertaken. Here, we investigate the effects of hAECs on microglia, the first immune responders to injury within the brain. METHODS: We generated a mouse model combining neonatal inflammation and perinatal hyperoxia, both of which are risk factors associated with perinatal brain injury. On embryonic day 16 we administered lipopolysaccharide (LPS), or saline (control), intra-amniotically to C57Bl/6 J mouse pups. On postnatal day (P)0, LPS pups were placed in hyperoxia (65% oxygen) and control pups in normoxia for 14 days. Pups were given either hAECs or saline intravenously on P4. RESULTS: At P14, relative to controls, LPS and hyperoxia pups had reduced body weight, increased density of apoptotic cells (TUNEL) in the cortex, striatum and white matter, astrocytes (GFAP) in the white matter and activated microglia (CD68) in the cortex and striatum, but no change in total microglia density (Iba1). hAEC administration rescued the decreased body weight and reduced apoptosis and astrocyte areal coverage in the white matter, but increased the density of total and activated microglia. We then stimulated primary microglia (CD45(low)CD11b(+)) with LPS for 24 h, followed by co-culture with hAEC conditioned medium for 48 h. hAEC conditioned medium increased microglial phagocytic activity, decreased microglia apoptosis and decreased M1 activation markers (CD86). Stimulating hAECs for 24 h with LPS did not alter release of cytokines known to modulate microglia activity. CONCLUSIONS: These data demonstrate that hAECs can directly immunomodulate brain microglia, probably via release of trophic factors. This observation offers promise that hAECs may afford therapeutic utility in the management of perinatal brain injury

    Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch

    Full text link
    corecore