185 research outputs found

    Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Get PDF
    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning process was used on these simply geometric specimens that resulted in what appears to be very smooth internal surfaces, when compared to other aerospace hardware cleaning methods

    Neutron imaging and tomography with MCPs

    Full text link
    A neutron imaging detector based on neutron-sensitive microchannel plates (MCPs) was constructed and tested at beamlines of thermal and cold neutrons. The MCPs are made of a glass mixture containing B-10 and natural Gd, which makes the bulk of the MCP an efficient neutron converter. Contrary to the neutron sensitive scintillator screens normally used in neutron imaging, spatial resolution is not traded off with detection efficiency. While the best neutron imaging scintillators have a detection efficiency around a percent, a detection efficiency of around 50% for thermal neutrons and 70% for cold neutrons has been demonstrated with these MCPs earlier. Our tests show a performance similar to conventional neutron imaging detectors, apart from the orders of magnitude better sensitivity. We demonstrate a spatial resolution better than 150 um. The sensitivity of this detector allows fast tomography and neutron video recording, and will make smaller reactor sites and even portable sources suitable for neutron imaging.Comment: Submitted to the proceedings of the 19th International Workshop on Radiation Imaging Detectors (iWoRiD) 2-6 July 2017, Krakow, Polan

    Neutron Characterization for Additive Manufacturing

    Get PDF
    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components

    Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing

    Get PDF
    Lack of assurance of quality with additively manufactured (AM) parts is a key technological barrier that prevents manufacturers from adopting AM technologies, especially for high-value applications where component failure cannot be tolerated. Developments in process control have allowed significant enhancement of AM techniques and marked improvements in surface roughness and material properties, along with a reduction in inter-build variation and the occurrence of embedded material discontinuities. As a result, the exploitation of AM processes continues to accelerate. Unlike established subtractive processes, where in-process monitoring is now commonplace, factory-ready AM processes have not yet incorporated monitoring technologies that allow discontinuities to be detected in process. Researchers have investigated new forms of instrumentation and adaptive approaches which, when integrated, will allow further enhancement to the assurance that can be offered when producing AM components. The state-of-the-art with respect to inspection methodologies compatible with AM processes is explored here. Their suitability for the inspection and identification of typical material discontinuities and failure modes is discussed with the intention of identifying new avenues for research and proposing approaches to integration into future generations of AM systems

    Autonomous Polycrystalline Material Decomposition for Hyperspectral Neutron Tomography

    Full text link
    Hyperspectral neutron tomography is an effective method for analyzing crystalline material samples with complex compositions in a non-destructive manner. Since the counts in the hyperspectral neutron radiographs directly depend on the neutron cross-sections, materials may exhibit contrasting neutron responses across wavelengths. Therefore, it is possible to extract the unique signatures associated with each material and use them to separate the crystalline phases simultaneously. We introduce an autonomous material decomposition (AMD) algorithm to automatically characterize and localize polycrystalline structures using Bragg edges with contrasting neutron responses from hyperspectral data. The algorithm estimates the linear attenuation coefficient spectra from the measured radiographs and then uses these spectra to perform polycrystalline material decomposition and reconstructs 3D material volumes to localize materials in the spatial domain. Our results demonstrate that the method can accurately estimate both the linear attenuation coefficient spectra and associated reconstructions on both simulated and experimental neutron data

    Porosity detection in electron beam-melted Ti-6Al-4V using high-resolution neutron imaging and grating-based interferometry

    Get PDF
    © 2017, Springer International Publishing Switzerland. A high-resolution neutron tomography system and a grating-based interferometer are used to explore electron beam-melted titanium test objects. The high-resolution neutron tomography system (attenuation-based imaging) has a pixel size of 6.4 µm, appropriate for detecting voids near 25 µm over a (1.5 cm)3 volume. The neutron interferometer provides dark-field (small-angle scattering) images with a pixel size of 30 µm. Moreover, the interferometer can be tuned to a scattering length, in this case, 1.97 µm, with a field-of-view of (6 cm)3. The combination of high-resolution imaging with grating-based interferometry provides a way for nondestructive testing of defective titanium samples. A chimney-like pore structure was discovered in the attenuation and dark-field images along one face of an electron beam-melted (EBM) Ti-6Al-4V cube. Tomographic reconstructions of the titanium samples are utilized as a source for a binary volume and for skeletonization of the pores. The dark-field volume shows features with dimensions near and smaller than the interferometer auto-correlation scattering length

    User s Guide for REFoffSpec Version 1.5.4

    Get PDF
    This document is a user s guide for the IDL software REFoffSpec version 1.5.4 whose purpose is to aggregate for analysis NeXus data files from the magnetism and liquids reflectometer experiments at the Oak Ridge National Laboratory Spallation Neutron Source. The software is used to scale and align multiple data files that constitute a continuous set for an experimental run. The User s Guide for REFoffSepc explains step by step the process using a specific example run. Output screens are provided to orient the user at each step. The guide documents in detail changes made to the original REFoffSpec code during the period November 2009 and January 2011. At the time of the completion of this version of the code it was accessible from the sns_tools interface as a beta version

    Neutron imaging of lithium concentration in LiNi0.33Mn0.33Co0.33O2 cathode

    Get PDF
    LiNi0.33Mn0.33Co0.33O2 (NMC) is a promising substitute for LiCoO2 because of its good thermal stability and high energy density. In this work, the lithium concentration distributions in an NMC cathode using neutron computed radiography technique at Oak Ridge National Laboratory’s High Flux Isotope Reactor (HFIR) CG-1D Cold Neutron Imaging Facility. Samples with four different state of charge (SOC) were prepared for neutron imaging: 70% SOC, 100% SOC, 105% SOC, and 110% SOC. The neutron tomographic reconstruction of NMC cathode reveals the information of electrochemical transport and spatial Li distribution inside the cathode. The experimental results were explained by a diffusion numerical model which maps the Li concentration evolution during the electrochemical reactions. The study demonstrates that neutron imaging technique can be a very powerful tool to understand the lithium concentrations and evaluate its state of conditions, thus providing information for design of safe lithium ion batteries and estimating their lives
    corecore