128 research outputs found

    Electron tunneling in biological molecules

    Get PDF
    Electron transfers in photosynthesis and respiration commonly occur between protein-bound prosthetic groups that are separated by large molecular distances (often greater than 10Å). Although the electron donors and acceptors are expected to be weakly coupled, the reactions are remarkably fast and proceed with high specificity. Tunneling timetables based on analyses of Fe^(2+)/Cu^+ to Ru^(3+) electron-transfer rates for Ru-modified heme and copper proteins reveal that the structure of the intervening polypeptide can control these distant donor-acceptor couplings. Multistep tunneling can account for the relatively rapid Cu^+ to Re^(2+) electron transfer observed in Re-modified azurin

    Elucidation of a Low Spin Cobalt(II) System in a Distorted Tetrahedral Geometry

    Get PDF
    We have prepared a series of divalent cobalt(II) complexes supported by the [PhBP_3] ligand ([PhBP_3] = [PhB(CH_2PPh_2)_3]-) to probe certain structural and electronic phenomena that arise from this strong field, anionic tris(phosphine) donor ligand. The solid-state structure of the complex [PhBP_3]CoI (1), accompanied by SQUID, EPR, and optical data, indicates that it is a pseudotetrahedral cobalt(II) species with a doublet ground state the first of its type. To our knowledge, all previous examples of 4-coordinate cobalt(II) complexes with doublet ground states have adopted square planar structure types. Complex 1 provided a useful precursor to the corresponding bromide and chloride complexes, {[PhBP_3]Co(μ-Br)}_2, (2), and {[PhBP_3]Co(μ-Cl)}_2, (3). These complexes were similarly characterized and shown to be dimeric in the solid-state. In solution, however, the monomeric low spin form of 2 and 3 dominates at 25 °C. There is spectroscopic evidence for a temperature-dependent monomer/dimer equilibrium in solution for complex 3. Furthermore, the dimers 2 and 3 did not display appreciable antiferromagnetic coupling that is typical of halide and oxo-bridged copper(II) and cobalt(II) dimers. Rather, the EPR and SQUID data for solid samples of 2 and 3 suggest that they have triplet ground states. Complexes 1, 2, and 3 are extremely oxygen sensitive. Thus, stoichiometric oxidation of 1 by dioxygen produced the 4-coordinate, high spin complex [PhB(CH_2P(O)Ph_2)_2(CH_2PPh_2)]CoI, (4), in which the [PhBP_3] ligand had undergone a 4-electron oxidation. Reaction of 1 with TlOAr (Ar = 2,6-Me_2Ph) afforded an example of a 4-coordinate, high spin complex, [PhBP_3]Co(O-2,6-Me_2Ph) (5), with an intact [PhBP_3] ligand. The latter two complexes were spectroscopically and structurally characterized for comparison to complexes 1, 2, and 3. Our data for these complexes collectively suggest that the [PhBP_3] ligand provides an unusually strong ligand-field to these divalent cobalt complexes that is chemically distinct from typical tris(phosphine) donor ligand sets, and distinct from tridentate borato ligands that have been previously studied. Coupling this strong ligand-field with a pronounced axial distortion away from tetrahedral symmetry, a geometric consequence that is enforced by the [PhBP_3] ligand, provides access to monomeric [PhBP_3]CoX complexes with doublet rather than quartet ground states

    Spectroscopy and Reactivity of a Photogenerated Tryptophan Radical in a Structurally Defined Protein Environment

    Get PDF
    Near-UV irradiation of structurally characterized [Re(I)(CO)_3(1,10-phenanthroline)(Q107H)](W48F/Y72F/H83Q/Y108W)AzM(II) [Az = Pseudomonas aeruginosa azurin, M = Cu, Zn]/[Co(NH_3)_5Cl]Cl_2 produces a tryptophan radical (W108•) with unprecedented kinetic stability. After rapid formation (k = 2.8 × 10^6 s^(-1)), the radical persists for more than 5 h at room temperature in the folded ReAzM(II) structure. The absorption spectrum of ReAz(W108•)M(II) exhibits maxima at 512 and 536 nm. Oxidation of K_4[Mo(CN)_8] by ReAz(W108•)Zn(II) places the W108•/W108 reduction potential in the protein above 0.8 V vs NHE

    X-ray Magnetic Circular Dichroism of Pseudomonas aeruginosa Nickel(II) Azurin

    Get PDF
    We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L3-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) μ_B. Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d_x^2-y^2 and 3d_z^2 are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d_x^2_(-y)^2 having much greater ligand character

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    Seasonal changes and population dynamics of the ctenophore Mnemiopsis leidyi after its first year of invasion in the Kiel Fjord, Western Baltic Sea

    Get PDF
    We analyzed the seasonal variations of the ctenophore Mnemiopsis leidyi weekly collected since its first record in the western Baltic Sea in October 2006. The distribution pattern together with the seasonal dynamics and population outbreaks in late summer 2007 indicate recent successfully establishment of M. leidyi in this area. Seasonal changes showed two periods of high reproductive activity characterized by a population structure dominated by small size classes, followed by an increase of larger ones. These results further revealed that the bulk of the population remains in deep layers during the periods of low population density, whereas it appeared situated in upper layers during the proliferation of the species. We further emphasized the strength of the population outbreaks, which can reach abundances >10-fold higher in time periods shorter than a week. The predatory impact this species may have in pelagic ecosystems warns on the importance of its recent range of expansion

    Methodology for global sensitivity analysis of consequence models

    Get PDF
    Research Highlights A methodology for global sensitivity analysis of consequence models is presented using a statistical emulator The methodology is demonstrated on the Phast consequence model for steady-state discharges of high-pressure carbon dioxide Dispersion model input parameters that have a significant effect on the extent of the plume are identified The study demonstrates that Bayesian analysis of model sensitivity can be conducted quickly and easily There is the potential for this to become a routine part of consequence modelling Abstract A methodology is presented for global sensitivity analysis of consequence models used in process safety applications. It involves running a consequence model around a hundred times and using the results to construct a statistical emulator, which is essentially a sophisticated curve fit to the data. The emulator is then used to undertake the sensitivity analysis and identify which input parameters (e.g. operating temperature and pressure, wind speed) have

    Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin

    Get PDF
    NMR spectra of paramagnetic Co(II) and Cu(II) derivatives of Pseudomonas aeruginosa His46Asp azurin have been investigated. In each derivative, assignment of hyperfine-shifted resonances outside the diamagnetic envelope of spectra recorded at 200 and 500 MHz confirms that the Asp carboxylate is coordinated to the paramagnetic metal center. The reduced paramagnetic shifts of the Cys112 proton resonances in Cu(II) and Co(II) His46Asp azurins compared to those of the corresponding wild type proteins indicate that metal-S(Cys) bonding is weakened in this mutant. The downfield shifts of the γ-CH_2 of Met121 suggest a stronger interaction between the metal and the Met thioether group than is present in the wild type protein. Molecular modeling of the metal site structure indicates a distorted tetrahedral geometry with Asp46 (monodentate carboxylate), Cys112, and His117 equatorial ligands. In this structure, the metal ion is shifted 0.3 Å out of the O(Asp)S(Cys)N(His) trigonal plane toward Met121

    Electron tunneling in biological molecules

    Full text link
    corecore