6,416 research outputs found
Automatic Image Registration in Infrared-Visible Videos using Polygon Vertices
In this paper, an automatic method is proposed to perform image registration
in visible and infrared pair of video sequences for multiple targets. In
multimodal image analysis like image fusion systems, color and IR sensors are
placed close to each other and capture a same scene simultaneously, but the
videos are not properly aligned by default because of different fields of view,
image capturing information, working principle and other camera specifications.
Because the scenes are usually not planar, alignment needs to be performed
continuously by extracting relevant common information. In this paper, we
approximate the shape of the targets by polygons and use affine transformation
for aligning the two video sequences. After background subtraction, keypoints
on the contour of the foreground blobs are detected using DCE (Discrete Curve
Evolution)technique. These keypoints are then described by the local shape at
each point of the obtained polygon. The keypoints are matched based on the
convexity of polygon's vertices and Euclidean distance between them. Only good
matches for each local shape polygon in a frame, are kept. To achieve a global
affine transformation that maximises the overlapping of infrared and visible
foreground pixels, the matched keypoints of each local shape polygon are stored
temporally in a buffer for a few number of frames. The matrix is evaluated at
each frame using the temporal buffer and the best matrix is selected, based on
an overlapping ratio criterion. Our experimental results demonstrate that this
method can provide highly accurate registered images and that we outperform a
previous related method
Background subtraction based on Local Shape
We present a novel approach to background subtraction that is based on the
local shape of small image regions. In our approach, an image region centered
on a pixel is mod-eled using the local self-similarity descriptor. We aim at
obtaining a reliable change detection based on local shape change in an image
when foreground objects are moving. The method first builds a background model
and compares the local self-similarities between the background model and the
subsequent frames to distinguish background and foreground objects.
Post-processing is then used to refine the boundaries of moving objects.
Results show that this approach is promising as the foregrounds obtained are
com-plete, although they often include shadows.Comment: 4 pages, 5 figures, 3 tabl
Evaluation of trackers for Pan-Tilt-Zoom Scenarios
Tracking with a Pan-Tilt-Zoom (PTZ) camera has been a research topic in
computer vision for many years. Compared to tracking with a still camera, the
images captured with a PTZ camera are highly dynamic in nature because the
camera can perform large motion resulting in quickly changing capture
conditions. Furthermore, tracking with a PTZ camera involves camera control to
position the camera on the target. For successful tracking and camera control,
the tracker must be fast enough, or has to be able to predict accurately the
next position of the target. Therefore, standard benchmarks do not allow to
assess properly the quality of a tracker for the PTZ scenario. In this work, we
use a virtual PTZ framework to evaluate different tracking algorithms and
compare their performances. We also extend the framework to add target position
prediction for the next frame, accounting for camera motion and processing
delays. By doing this, we can assess if predicting can make long-term tracking
more robust as it may help slower algorithms for keeping the target in the
field of view of the camera. Results confirm that both speed and robustness are
required for tracking under the PTZ scenario.Comment: 6 pages, 2 figures, International Conference on Pattern Recognition
and Artificial Intelligence 201
Tracking in Urban Traffic Scenes from Background Subtraction and Object Detection
In this paper, we propose to combine detections from background subtraction
and from a multiclass object detector for multiple object tracking (MOT) in
urban traffic scenes. These objects are associated across frames using spatial,
colour and class label information, and trajectory prediction is evaluated to
yield the final MOT outputs. The proposed method was tested on the Urban
tracker dataset and shows competitive performances compared to state-of-the-art
approaches. Results show that the integration of different detection inputs
remains a challenging task that greatly affects the MOT performance
Online Mutual Foreground Segmentation for Multispectral Stereo Videos
The segmentation of video sequences into foreground and background regions is
a low-level process commonly used in video content analysis and smart
surveillance applications. Using a multispectral camera setup can improve this
process by providing more diverse data to help identify objects despite adverse
imaging conditions. The registration of several data sources is however not
trivial if the appearance of objects produced by each sensor differs
substantially. This problem is further complicated when parallax effects cannot
be ignored when using close-range stereo pairs. In this work, we present a new
method to simultaneously tackle multispectral segmentation and stereo
registration. Using an iterative procedure, we estimate the labeling result for
one problem using the provisional result of the other. Our approach is based on
the alternating minimization of two energy functions that are linked through
the use of dynamic priors. We rely on the integration of shape and appearance
cues to find proper multispectral correspondences, and to properly segment
objects in low contrast regions. We also formulate our model as a frame
processing pipeline using higher order terms to improve the temporal coherence
of our results. Our method is evaluated under different configurations on
multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018
Les nouvelles constitutions africaines: influences et objectifs. Étude de cas du Bénin, du Ghana et du Sénégal
- …
