15,628 research outputs found
Determining at Electron-Positron Colliders
Verifying is critical to test the three generation
assumption of the Standard Model. So far our best knowledge of is
inferred either from the unitarity of CKM matrix or from single
top-quark productions upon the assumption of universal weak couplings. The
unitarity could be relaxed in new physics models with extra heavy quarks and
the universality of weak couplings could also be broken if the coupling
is modified in new physics models. In this work we propose to measure
in the process of without prior knowledge of the number
of fermion generations or the strength of the coupling. Using an
effective Lagrangian approach, we perform a model-independent analysis of the
interactions among electroweak gauge bosons and the third generation quarks,
i.e. the , and couplings. The electroweak symmetry
of the Standard Model specifies a pattern of deviations of the --
and -- couplings after one imposes the known experimental
constraint on the -- coupling. We demonstrate that, making use of
the predicted pattern and the accurate measurements of top-quark mass and width
from the energy threshold scan experiments, one can determine from the
cross section and the forward-backward asymmetry of top-quark pair production
at an {\it unpolarized} electron-positron collider.Comment: publish versio
Uniqueness theorems for meromorphic mappings sharing hyperplanes in general position
The purpose of this article is to study the uniqueness problem for
meromorphic mappings from into the complex projective space
By making using of the method of dealing with
multiple values due to L. Yang and the technique of Dethloff-Quang-Tan
respectively, we obtain two general uniqueness theorems which improve and
extend some known results of meromorphic mappings sharing hyperplanes in
general position.Comment: 10 page
Simple non-Abelian extensions of the standard model gauge group and the diboson excesses at the LHC
The ATLAS collaboration reported excesses at around 2 TeV in the di-boson
production decaying into hadronic final states. We consider the possibility of
explaining the excesses with extra gauge bosons in two simple non-Abelian
extensions of the Standard Model. One is the so-called models with a
symmetry structure of and the other is
the models with an extended symmetry of . The and bosons emerge after the electroweak symmetry is
spontaneously broken. Two patterns of symmetry breaking in the models
are considered in this work: one is , the other is . The symmetry breaking of the model is
. We perform a global
analysis of and phenomenology in ten new physics models,
including all the channels of decay. Our study shows that
the leptonic mode and the dijet mode of decays impose a
very stringent bound on the parameter space in several new physics models. Such
tight bounds provide a useful guide for building new physics models to address
on the diboson anomalies. We also note that the Left-Right and Lepton-Phobic
models can explain the excess if the deviation in
the pair around 2~TeV were confirmed to be a fluctuation of the SM
backgrounds.Comment: Publish version; title changed as suggested by journal Edito
- …
