5,688 research outputs found

    Structure controllability of complex network based on preferential matching

    Full text link
    Minimum driver node sets (MDSs) play an important role in studying the structural controllability of complex networks. Recent research has shown that MDSs tend to avoid high-degree nodes. However, this observation is based on the analysis of a small number of MDSs, because enumerating all of the MDSs of a network is a #P problem. Therefore, past research has not been sufficient to arrive at a convincing conclusion. In this paper, first, we propose a preferential matching algorithm to find MDSs that have a specific degree property. Then, we show that the MDSs obtained by preferential matching can be composed of high- and medium-degree nodes. Moreover, the experimental results also show that the average degree of the MDSs of some networks tends to be greater than that of the overall network, even when the MDSs are obtained using previous research method. Further analysis shows that whether the driver nodes tend to be high-degree nodes or not is closely related to the edge direction of the network

    A comprehensive analysis of Fermi Gamma-Ray Burst Data: IV. Spectral lag and Its Relation to Ep Evolution

    Full text link
    The spectral evolution and spectral lag behavior of 92 bright pulses from 84 gamma-ray bursts (GRBs) observed by the Fermi GBM telescope are studied. These pulses can be classified into hard-to-soft pulses (H2S, 64/92), H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We focus on the relationship between spectral evolution and spectral lags of H2S and H2S-dominated-tracking pulses. %in hard-to-soft pulses (H2S, 64/92) and H2S-dominating-tracking (21/92) pulses. The main trend of spectral evolution (lag behavior) is estimated with logEpkElog(t+t0)\log E_p\propto k_E\log(t+t_0) (τ^kτ^logE{\hat{\tau}} \propto k_{\hat{\tau}}\log E), where EpE_p is the peak photon energy in the radiation spectrum, t+t0t+t_0 is the observer time relative to the beginning of pulse t0-t_0, and τ^{\hat{\tau}} is the spectral lag of photons with energy EE with respect to the energy band 88-2525 keV. For H2S and H2S-dominated-tracking pulses, a weak correlation between kτ^/Wk_{{\hat{\tau}}}/W and kEk_E is found, where WW is the pulse width. We also study the spectral lag behavior with peak time tpEt_{\rm p_E} of pulses for 30 well-shaped pulses and estimate the main trend of the spectral lag behavior with logtpEktplogE\log t_{\rm p_E}\propto k_{t_p}\log E. It is found that ktpk_{t_p} is correlated with kEk_E. We perform simulations under a phenomenological model of spectral evolution, and find that these correlations are reproduced. We then conclude that spectral lags are closely related to spectral evolution within the pulse. The most natural explanation of these observations is that the emission is from the electrons in the same fluid unit at an emission site moving away from the central engine, as expected in the models invoking magnetic dissipation in a moderately-high-σ\sigma outflow.Comment: 58 pages, 11 figures, 3 tables. ApJ in pres

    Temperature-controlled electrospinning of EVOH nanofibre mats encapsulated with Ag, CuO, and ZnO particles for skin wound dressing

    Get PDF
    To treat skin burns, a new wound dressing, nanofibre mats with metal or metal oxide nanoparticles (Ag, CuO, and ZnO), was fabricated using the electrospinning technique. During a therapeutic process, the antibacterial ability and bio-compatibility of a new dressing material are of major concern. To expound the characteristics of ethylene vinyl alcohol (EVOH) nanofibre mats encapsulated with metal or metal oxide nanoparticles, denoted as Ag-EVOH, CuO-EVOH, and ZnO-EVOH, for use as new wound dressing materials, we investigated the suitable processing parameters to fabricate these materials, such as the voltage, tip-to-collector distance, concentration of the solution, and effect of environmental temperature. The antibacterial ability and bio-compatibility of Ag-EVOH, CuO-EVOH, and ZnO-EVOH were then tested and quantified. The outcomes show that the most suitable temperature for the fabrication of the materials is 40 °C (±3 °C). The antibacterial experiment results indicate that 0.08 g/ml of metal/metallic oxide shows the highest antibacterial ability toward Staphylococcus aureus. Furthermore, the largest diameters of the bacteriostatic loops of the three types of nanofibre mats, i.e. Ag-EVOH, CuO-EVOH, and ZnO-EVOH, are 5.89, 5.21, and 4.12 mm, respectively. Finally, the cell proliferations on the three nanofibre mats show a similar growth trend

    Modeling of Signal Plans for Transit Signal Priority at Isolated Intersections under Stochastic Condition

    Get PDF
    Transit signal priority (TSP) is recognized as having the potential to improve transit service reliability at small cost to general traffic. The popular preference for TSP encounters the challenges of various and challenging test scenarios. According to the stochastic characteristics of traffic flow, the signal timing model was established for TSP at an isolated signal intersection, where the passenger average delay was used as the optimization objective, and the weights of all phases were considered. The priority logic that is considered in the study provides cycle length and green time within a fixed-time traffic signal control environment. Using the Gauss elimination, the quantitative relationships were determined between phase clearance reliability (PCR), cycle length, and green time. Simulation experiments conducted by the particle swarm optimization (PSO) algorithm indicated that (1) the random variation of arrival rate has an obvious effect on traffic signal settings; (2) the proposed TSP model can reduce passenger delays, especially under stochastic traffic flow.</jats:p
    corecore