8,878 research outputs found
Heat transport of electron-doped Cobaltates
Within the t-J model, the heat transport of electron-doped cobaltates is
studied based on the fermion-spin theory. It is shown that the temperature
dependent thermal conductivity is characterized by the low temperature peak
located at a finite temperature. The thermal conductivity increases
monotonously with increasing temperature at low temperatures T 0.1, and
then decreases with increasing temperature for higher temperatures T
0.1, in qualitative agreement with experimental result observed from
NaCoO .Comment: 4 pages, 1 fig, corrected typos, accepted for publication in Commun.
Theor. Phy
Chiral symmetry analysis and rigid rotational invariance for the lattice dynamics of single-wall carbon nanotubes
In this paper, we provide a detailed expression of the vibrational potential
for the lattice dynamics of the single-wall carbon nanotubes (SWCNT) satisfying
the requirements of the exact rigid translational as well as rotational
symmetries, which is a nontrivial generalization of the valence force model for
the planar graphene sheet. With the model, the low frequency behavior of the
dispersion of the acoustic modes as well as the flexure mode can be precisely
calculated. Based upon a comprehensive chiral symmetry analysis, the calculated
mode frequencies (including all the Raman and infrared active modes),
velocities of acoustic modes and the polarization vectors are systematically
fitted in terms of the chiral angle and radius, where the restrictions of
various symmetry operations of the SWCNT are fulfilled
Pseudodoping of Metallic Two-Dimensional Materials by The Supporting Substrates
We demonstrate how hybridization between a two-dimensional material and its
substrate can lead to an apparent heavy doping, using the example of monolayer
TaS grown on Au(111). Combining calculations, scanning
tunneling spectroscopy experiments and a generic model, we show that strong
changes in Fermi areas can arise with much smaller actual charge transfer. This
mechanism, which we refer to as pseudodoping, is a generic effect for metallic
two-dimensional materials which are either adsorbed to metallic substrates or
embedded in vertical heterostructures. It explains the apparent heavy doping of
TaS on Au(111) observed in photoemission spectroscopy and spectroscopic
signatures in scanning tunneling spectroscopy. Pseudodoping is associated with
non-linear energy-dependent shifts of electronic spectra, which our scanning
tunneling spectroscopy experiments reveal for clean and defective TaS
monolayer on Au(111). The influence of pseudodoping on the formation of charge
ordered, magnetic, or superconducting states is analyzed.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0022
Enhanced squeezing with parity kicks
Using exponential quadratic operators, we present a general framework for
studying the exact dynamics of system-bath interaction in which the Hamiltonian
is described by the quadratic form of bosonic operators. To demonstrate the
versatility of the approach, we study how the environment affects the squeezing
of quadrature components of the system. We further propose that the squeezing
can be enhanced when parity kicks are applied to the system.Comment: 4 pages, 2 figure
Joint Spectral Characterization of Photon-Pair Sources
The ability to determine the joint spectral properties of photon pairs
produced by the processes of spontaneous parametric downconversion (SPDC) and
spontaneous four wave mixing (SFWM) is crucial for guaranteeing the usability
of heralded single photons and polarization-entangled pairs for multi-photon
protocols. In this paper, we compare six different techniques that yield either
a characterization of the joint spectral intensity or of the closely-related
purity of heralded single photons. These six techniques include: i) scanning
monochromator measurements, ii) a variant of Fourier transform spectroscopy
designed to extract the desired information exploiting a resource-optimized
technique, iii) dispersive fibre spectroscopy, iv) stimulated-emission-based
measurement, v) measurement of the second-order correlation function
for one of the two photons, and vi) two-source Hong-Ou-Mandel interferometry.
We discuss the relative performance of these techniques for the specific cases
of a SPDC source designed to be factorable and SFWM sources of varying purity,
and compare the techniques' relative advantages and disadvantages
Subharmonic and Endoscopic Contrast Imaging of Pancreatic Masses: A Pilot Study.
OBJECTIVES: To use subharmonic imaging (SHI) to depict the vascularity of pancreatic masses compared to contrast-enhanced endoscopic ultrasound (EUS) and pathologic results.
METHODS: Sixteen patients scheduled for biopsy of a pancreatic mass were enrolled in an Institutional Review Board-approved study. Pulse-inversion SHI (transmitting/receiving at 2.5/1.25 MHz) was performed on a LOGIQ 9 system (GE Healthcare, Milwaukee, WI) with a 4C transducer, whereas contrast harmonic EUS (transmitting/receiving at 4.7/9.4 MHz) was performed with a radial endoscope (GF-UTC180; Olympus Corporation, Tokyo, Japan) connected to a ProSound SSD α-10 scanner (Hitachi Aloka, Tokyo, Japan). Two injections of the contrast agent Definity (Lantheus Medical Imaging, North Billerica, MA) were administrated (0.3-0.4 and 0.6-0.8 mL for EUS and SHI, respectively). Contrast-to-tissue ratios (CTRs) in the mass and an adjacent vessel were calculated. Four physicians independently scored the images (benign to malignant) for diagnostic accuracy and inter-reader agreement.
RESULTS: One patient dropped out before imaging, leaving 11 adenocarcinomas, 1 gastrointestinal stromal tumor with pancreatic infiltration, and 3 benign masses. Marked subharmonic signals were obtained in all patients, with intratumoral blood flow clearly visualized with SHI. Significantly greater CTRs were obtained in the masses with SHI than with EUS (mean ± SD, 1.71 ± 1.63 versus 0.63 ± 0.89; P = .016). There were no differences in the CTR in the surrounding vessels or when grouped by pathologic results (P \u3e .60). The accuracies for contrast EUS and SHI were low (\u3c53%), albeit with a greater κ value for SHI (0.34) than for EUS (0.13).
CONCLUSIONS: Diagnostic accuracy of contrast EUS and transabdominal SHI for assessment of pancreatic masses was quite low in this pilot study. However, SHI had improved tumoral CTRs relative to contrast EUS
Thermodynamic Geometry and Critical Behavior of Black Holes
Based on the observations that there exists an analogy between the
Reissner-Nordstr\"om-anti-de Sitter (RN-AdS) black holes and the van der
Waals-Maxwell liquid-gas system, in which a correspondence of variables is
, we study the Ruppeiner geometry, defined as
Hessian matrix of black hole entropy with respect to the internal energy (not
the mass) of black hole and electric potential (angular velocity), for the RN,
Kerr and RN-AdS black holes. It is found that the geometry is curved and the
scalar curvature goes to negative infinity at the Davies' phase transition
point for the RN and Kerr black holes.
Our result for the RN-AdS black holes is also in good agreement with the one
about phase transition and its critical behavior in the literature.Comment: Revtex, 18 pages including 4 figure
Note on Generalized Janus Configurations
We study several aspects of generalized Janus configuration, which includes a
theta term. We investigate the vacuum structure of the theory and find that
unlike the Janus configuration without theta term there is no nontrivial
vacuum. We also discuss BPS soliton configuration both by supersymmetry
analysis and from energy functional. The half BPS configurations could be
realized by introducing transverse (p,q)-strings in original brane
configuration corresponding to generalized Janus configuration. It turns out
the BPS soliton could be taken as modified dyon. We discuss the solution of
half BPS equations for the sharp interface case. Moreover we construct less
supersymmetric Janus configuration with theta term.Comment: 27 pages; References adde
- …
