43,216 research outputs found

    Hadronic Molecular States Composed of Spin-323\over 2 Singly Charmed Baryons

    Full text link
    We investigate the possible deuteron-like molecules composed of a pair of charmed spin-32\frac{3}{2} baryons, or one charmed baryon and one charmed antibaryon within the one-boson-exchange (OBE) model. For the spin singlet and triplet systems, we consider the couple channel effect between systems with different orbital angular momentum. Most of the systems have binding solutions. The couple channel effect plays a significant role in the formation of some loosely bound states. The possible molecular states of ΩcΩc\Omega_c^*\Omega_c^* and ΩcΩˉc\Omega_c^*\bar{\Omega}_c^* might be stable once produced.Comment: 18 pages, 7 figure

    In-plane Chiral Tunneling and Out-of-plane Valley-polarized Quantum Tunneling in Twisted Graphene Trilayer

    Full text link
    Here we show that twisted graphene trilayer made by misoriented stacking a graphene monolayer on top of a Bernal graphene bilayer can exhibit rich and tailored electronic properties. For the case that the graphene monolayer and bilayer are strongly coupled, both the massless Dirac fermions and massive chiral fermions coexist in the twisted trilayer, leading to unique in-plane chiral tunneling. For a weak coupling between the two graphene systems, the distinct chiralities and pseudospin textures of quasiparticles in monolayer and bilayer enable vertical valley-polarized quantum tunneling between them. Intriguingly, the polarity of the valley polarization can be inverted by controlling the rotational angles between the two systems. Our results indicate that layered van der Waals structures assembled from individual atomic planes can create materials that harbor unusual properties and new functionalities depending on how the crystalline layers are stacked.Comment: 4 figures. To appear in PR
    corecore