6,891 research outputs found
Mst Out and HCC In
Mst1 and Mst2 are key components of the Hippo tumor suppressor pathway. In this issue, Zhou et al. (2009) reported that Mst1/2 ablation leads to hepatocellular carcinomas. Unexpectedly, Mst1/2 may activate another kinase besides Lats1 and Lats2 to phosphorylate YAP, and the role of Mst1/2 in YAP regulation is cell type dependent
Improved Decoding of Staircase Codes: The Soft-aided Bit-marking (SABM) Algorithm
Staircase codes (SCCs) are typically decoded using iterative bounded-distance
decoding (BDD) and hard decisions. In this paper, a novel decoding algorithm is
proposed, which partially uses soft information from the channel. The proposed
algorithm is based on marking certain number of highly reliable and highly
unreliable bits. These marked bits are used to improve the
miscorrection-detection capability of the SCC decoder and the error-correcting
capability of BDD. For SCCs with -error-correcting
Bose-Chaudhuri-Hocquenghem component codes, our algorithm improves upon
standard SCC decoding by up to ~dB at a bit-error rate (BER) of
. The proposed algorithm is shown to achieve almost half of the gain
achievable by an idealized decoder with this structure. A complexity analysis
based on the number of additional calls to the component BDD decoder shows that
the relative complexity increase is only around at a BER of .
This additional complexity is shown to decrease as the channel quality
improves. Our algorithm is also extended (with minor modifications) to product
codes. The simulation results show that in this case, the algorithm offers
gains of up to ~dB at a BER of .Comment: 10 pages, 12 figure
Edge states at nematic domain walls in FeSe films
Quantum spin Hall (QSH) effect is an intriguing phenomenon arising from the
helical edge states in two-dimensional topological insulators. We use molecular
beam epitaxy (MBE) to prepare FeSe films with atomically sharp nematic domain
boundaries, where tensile strains, nematicity suppression and topological band
inversion are simultaneously achieved. Using scanning tunneling microscopy
(STM), we observe edge states at the Fermi level that spatially distribute as
two distinct strips in the vicinity of the domain boundaries. At the endpoint
of the boundaries, a bound state at the Fermi level is further observed. The
topological origin of the edge states is supported by density functional theory
calculations. Our findings not only demonstrate a candidate for QSH states, but
also provide a new pathway to realize topological superconductivity in a
single-component film
Size-controllable synthesis and bandgap modulation of single-layered RF-sputtered bismuth nanoparticles
We here report a simple and efficient method to grow single-layer bismuth nanoparticles (BiNPs) with various sizes on glass substrates. Optimal conditions were found to be 200°C and 0.12 W/cm(2) at a growth rate of 6 Å/s, with the deposition time around 40 s. Scanning electron microscope (SEM) images were used to calculate the particle size distribution statistics, and high-resolution X-ray diffraction (XRD) patterns were used to examine the chemical interactions between BiNPs and the substrates. By measuring the transmission spectra within the range of 300 to 1,000 nm, we found that the optical bandgap can be modulated from 0.45 to 2.63 eV by controlling the size of these BiNPs. These interesting discoveries offer an insight to explore the dynamic nature of nanoparticles
Graphene controlled Brewster angle device for ultra broadband terahertz modulation
Terahertz modulators with high tunability of both intensity and phase are essential for effective control of electromagnetic properties. Due to the underlying physics behind existing approaches there is still a lack of broadband devices able to achieve deep modulation. Here, we demonstrate the effect of tunable Brewster angle controlled by graphene, and develop a highly-tunable solid-state graphene/quartz modulator based on this mechanism. The Brewster angle of the device can be tuned by varying the conductivity of the graphene through an electrical gate. In this way, we achieve near perfect intensity modulation with spectrally flat modulation depth of 99.3 to 99.9 percent and phase tunability of up to 140 degree in the frequency range from 0.5 to 1.6 THz. Different from using electromagnetic resonance effects (for example, metamaterials), this principle ensures that our device can operate in ultra-broadband. Thus it is an effective principle for terahertz modulation
- …
