3,147 research outputs found
Metascreen-Based Acoustic Passive Phased Array
Conventional phased arrays require a large number of sources in forming a complex wave front, resulting in complexity and a high cost to operate the individual sources. We present a passive phased array using an acoustic metascreen that transmits sound energy from a single source and steers the transmitted wave front to form the desired fields. The metascreen is composed of elements that have a discrete resolution along the screen at an order smaller than the wavelength, allowing for fine wave-front shaping beyond the paraxial approximation. The performance is verified in experiment by forming a self-bending beam. Our metascreen-based passive array with its simplicity and capability has applications in places where conventional active arrays are complex and have limitations.Acoustical Society of AmericaNational Basic Research Program of China (973 Program) 2010CB327803 2012CB921504National Natural Science Foundation of China 11174138 11174139 11222442 81127901 11274168Physic
Hinge solitons in three-dimensional second-order topological insulators
A second-order topological insulator in three dimensions refers to a
topological insulator with gapless states localized on the hinges, which is a
generalization of a traditional topological insulator with gapless states
localized on the surfaces. Here we theoretically demonstrate the existence of
stable solitons localized on the hinges of a second-order topological insulator
in three dimensions when nonlinearity is involved. By means of systematic
numerical study, we find that the soliton has strong localization in real space
and propagates along the hinge unidirectionally without changing its shape. We
further construct an electric network to simulate the second-order topological
insulator. When a nonlinear inductor is appropriately involved, we find that
the system can support a bright soliton for the voltage distribution
demonstrated by stable time evolution of a voltage pulse.Comment: 11 pages, 6 figure
The electromagnetic and gravitational-wave radiations of X-ray transient CDF-S XT2
Binary neutron star (NS) mergers may result in remnants of supra-massive or
even stable NS, which have been supported indirectly by observed X-ray plateau
of some gamma-ray bursts (GRBs) afterglow. Recently, Xue et al. (2019)
discovered a X-ray transient CDF-S XT2 that is powered by a magnetar from
merger of double NS via X-ray plateau and following stepper phase. However, the
decay slope after the plateau emission is a little bit larger than the
theoretical value of spin-down in electromagnetic (EM) dominated by losing its
rotation energy. In this paper, we assume that the feature of X-ray emission is
caused by a supra-massive magnetar central engine for surviving thousands of
seconds to collapse black hole. Within this scenario, we present the
comparisons of the X-ray plateau luminosity, break time, and the parameters of
magnetar between CDF-S XT2 and other short GRBs with internal plateau samples.
By adopting the collapse time to constrain the equation of state (EOS), we find
that three EOSs (GM1, DD2, and DDME2) are consistent with the observational
data. On the other hand, if the most released rotation energy of magnetar is
dominated by GW radiation, we also constrain the upper limit of ellipticity of
NS for given EOS, and it is range in . Its GW signal
can not be detected by aLIGO or even for more sensitive Einstein Telescope in
the future.Comment: 13 pages, 5 figures,1 table. Accepted for publication by Research in
Astronomy and Astrophysic
Extended Emission of Short Gamma-Ray Bursts
Preliminary results of our analysis on the extended emission of short/medium
duration GRBs observed with Swift/BAT are presented. The Bayesian blocks
algorithm is used to analyze the burst durations and the temporal structure of
the lightcurves in different energy bands. We show here the results of three
bursts (GRBs 050724, 061006 and 070714B) that have a prominent soft extended
emission component in our sample. The extended emission of these bursts is a
continuous, flickering-liked component, lasting seconds post the GRB
trigger at 15-25 keV bands. Without considering this component, the three
bursts are classified as short GRBs, with seconds. GRB 060614
has an emission component similar to the extended emission, but this component
has pulse-liked structure, possibly indicating that this emission component is
different from that observed in GRBs 050724, 061006, and 070714B. Further
analysis on the spectral evolution behavior of the extended emission component
is on going.Comment: 2008 Nanjing GRB Conferenc
The study of neutron spectra in water bath from Pb target irradiated by 250MeV/u protons
The spallation neutrons were produced by the irradiation of Pb with 250 MeV
protons. The Pb target was surrounded by water which was used to slow down the
emitted neutrons. The moderated neutrons in the water bath were measured by
using the resonance detectors of Au, Mn and In with Cd cover. According to the
measured activities of the foils, the neutron flux at different resonance
energy were deduced and the epithermal neutron spectra were proposed.
Corresponding results calculated with the Monte Carlo code MCNPX were compared
with the experimental data to check the validity of the code.Comment: 6 pages,9 figure
The Origin of the Prompt Emission for Short GRB 170817A: Photosphere Emission or Synchrotron Emission?
The first gravitational-wave event from the merger of a binary neutron star system (GW170817) was detected recently. The associated short gamma-ray burst (GRB 170817A) has a low isotropic luminosity (~1047 erg s−1) and a peak energy E p ~ 145 keV during the initial main emission between −0.3 and 0.4 s. The origin of this short GRB is still under debate, but a plausible interpretation is that it is due to the off-axis emission from a structured jet. We consider two possibilities. First, since the best-fit spectral model for the main pulse of GRB 170817A is a cutoff power law with a hard low-energy photon index (), we consider an off-axis photosphere model. We develop a theory of photosphere emission in a structured jet and find that such a model can reproduce a low-energy photon index that is softer than a blackbody through enhancing high-latitude emission. The model can naturally account for the observed spectrum. The best-fit Lorentz factor along the line of sight is ~20, which demands that there is a significant delay between the merger and jet launching. Alternatively, we consider that the emission is produced via synchrotron radiation in an optically thin region in an expanding jet with decreasing magnetic fields. This model does not require a delay of jet launching but demands a larger bulk Lorentz factor along the line of sight. We perform Markov Chain Monte Carlo fitting to the data within the framework of both models and obtain good fitting results in both cases
Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight.
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in
Low-energy Scattering of System and the Resonance-like Structure
In this paper, low-energy scattering of the meson
system is studied within L\"uscher's finite-size formalism using
twisted mass gauge field configurations. With three different pion mass values,
the -wave threshold scattering parameters, namely the scattering length
and the effective range , are extracted in channel. Our
results indicate that, in this particular channel, the interaction between the
two vector charmed mesons is weakly repulsive in nature hence do not support
the possibility of a shallow bound state for the two mesons, at least for the
pion mass values being studied. This study provides some useful information on
the nature of the newly discovered resonance-like structure
observed in various experiments.Comment: 11 pages, 6 figures. arXiv admin note: substantial text overlap with
arXiv:1403.131
Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight
FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development
The role of Omi/HtrA2 protease in neonatal postasphyxial serum-induced apoptosis in human kidney proximal tubule cells
Omi/HtrA2, a proapoptotic mitochondrial serine protease, is involved in both caspase-dependent and caspaseindependent apoptosis. A growing body of evidence indicates that Omi/HtrA2 plays an important role in the pathogenesis of a variety of ischemia-reperfusion (I/R) injuries. However, the role of Omi/HtrA2 in renal injuries that occur in neonates with asphyxia remains unknown. The present study was designed to investigate whether Omi/HtrA2 plays an important role in the types of renal injuries that are induced by neonatal postasphyxial serum. Human renal proximal tubular cell line (HK-2) cells were used as targets. A 20% serum taken from neonates one day after asphyxia was applied to target cells as an attacking factor. We initially included control and postasphyxial serum-attacked groups and later included a ucf-101 group in the study. In the postasphyxial serum-treated group, cytosolic Omi/HtrA2 and caspase-3 expression in HK-2 cells was significantly higher than in the control group. Moreover, the concentration of cytosolic caspase-3 was found to be markedly decreased in HK-2 cells in the ucf-101 group. Our results suggest both that postasphyxial serum has a potent apoptosis-inducing effect on HK-2 cells and that this effect can be partially blocked by ucf-101. Taken together, our results demonstrate for the first time that postasphyxial serum from neonates results in Omi/HtrA2 translocation from the mitochondria to the cytosol, where it promotes HK-2 cell apoptosis via a protease activity-dependent, caspase-mediated pathway
- …
