4,198 research outputs found

    A Study of Fermi-LAT GeV gamma-ray Emission towards the Magnetar-harboring Supernova Remnant Kesteven 73 and Its Molecular Environment

    Full text link
    We report our independent GeV gamma-ray study of the young shell-type supernova remnant (SNR) Kes 73 which harbors a central magnetar, and CO-line millimeter observations toward the SNR. Using 7.6 years of Fermi-LAT observation data, we detected an extended gamma-ray source ("source A") with the centroid on the west of the SNR, with a significance of 21.6 sigma in 0.1-300 GeV and an error circle of 5.4 arcminute in angular radius. The gamma-ray spectrum cannot be reproduced by a pure leptonic emission or a pure emission from the magnetar, and thus a hadronic emission component is needed. The CO-line observations reveal a molecular cloud (MC) at V_LSR~90 km/s, which demonstrates morphological correspondence with the western boundary of the SNR brightened in multiwavelength. The 12CO (J=2-1)/12CO (J=1-0) ratio in the left (blue) wing 85-88 km/s is prominently elevated to ~1.1 along the northwestern boundary, providing kinematic evidence of the SNR-MC interaction. This SNR-MC association yields a kinematic distance 9 kpc to Kes 73. The MC is shown to be capable of accounting for the hadronic gamma-ray emission component. The gamma-ray spectrum can be interpreted with a pure hadronic emission or a magnetar+hadronic hybrid emission. In the case of pure hadronic emission, the spectral index of the protons is 2.4, very similar to that of the radio-emitting electrons, essentially consistent with the diffusive shock acceleration theory. In the case of magnetar+hadronic hybrid emission, a magnetic field decay rate >= 10^36 erg/s is needed to power the magnetar's curvature radiation.Comment: 7 figures, published in Ap

    Transcriptional up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic agonist-induced apoptosis in cardiomyocytes.

    Get PDF
    The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the -adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immuno-precipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure. © 2018 You et al

    Experimental Quantum Teleportation and Multi-Photon Entanglement via Interfering Narrowband Photon Sources

    Full text link
    In this letter, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high demanding synchronization technique in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multi-photon source will have applications in some advanced quantum communication protocols and linear optical quantum computation

    Influence of the image levels of distal femur on the measurement of tibial tubercle-trochlear groove distance—a comparative study

    Get PDF
    BACKGROUND: The purpose of the present study was to determine whether the image levels of the distal femur affected the measurement of the tibial tubercle-trochlear groove (TT-TG) distance. METHODS: Thirty sets of computer tomography (CT) images and 30 sets of MR images of the knee were evaluated. The TT-TG distance was quantified at multiple image levels in 1.5-mm increments, covering the proximodistal range of the trochlear groove. The CT measurement was based on osseous landmarks; the magnetic resonance imaging (MRI) measurement was based on cartilaginous and osseous landmarks. RESULTS: The average TT-TG distances measured with CT, with MRI based on cartilaginous landmarks, and with MRI based on osseous landmarks were 15.74 mm (SD 3.83 mm), 12.8 mm (SD 5.67 mm), and 12.36 mm (SD 5.58 mm), respectively. No significant difference was found across image levels in the CT measurement and the MRI measurement upon osseous landmarks (P = 0.64, P = 0.11); yet, the difference was significant in the MRI measurement upon cartilaginous landmarks (P < 0.01). Large deviation was found between levels in individual subjects in all the three sorts of measurement. The proximal levels were the most variable, while the mid levels were the least variable. CONCLUSIONS: Measurements of the TT-TG distance are not identical across the levels of the distal femur. Cautions should be taken when specific image slices were selected for evaluation
    corecore