3,134 research outputs found
Learning a Partitioning Advisor with Deep Reinforcement Learning
Commercial data analytics products such as Microsoft Azure SQL Data Warehouse
or Amazon Redshift provide ready-to-use scale-out database solutions for
OLAP-style workloads in the cloud. While the provisioning of a database cluster
is usually fully automated by cloud providers, customers typically still have
to make important design decisions which were traditionally made by the
database administrator such as selecting the partitioning schemes.
In this paper we introduce a learned partitioning advisor for analytical
OLAP-style workloads based on Deep Reinforcement Learning (DRL). The main idea
is that a DRL agent learns its decisions based on experience by monitoring the
rewards for different workloads and partitioning schemes. We evaluate our
learned partitioning advisor in an experimental evaluation with different
databases schemata and workloads of varying complexity. In the evaluation, we
show that our advisor is not only able to find partitionings that outperform
existing approaches for automated partitioning design but that it also can
easily adjust to different deployments. This is especially important in cloud
setups where customers can easily migrate their cluster to a new set of
(virtual) machines
The End of a Myth: Distributed Transactions Can Scale
The common wisdom is that distributed transactions do not scale. But what if
distributed transactions could be made scalable using the next generation of
networks and a redesign of distributed databases? There would be no need for
developers anymore to worry about co-partitioning schemes to achieve decent
performance. Application development would become easier as data placement
would no longer determine how scalable an application is. Hardware provisioning
would be simplified as the system administrator can expect a linear scale-out
when adding more machines rather than some complex sub-linear function, which
is highly application specific.
In this paper, we present the design of our novel scalable database system
NAM-DB and show that distributed transactions with the very common Snapshot
Isolation guarantee can indeed scale using the next generation of RDMA-enabled
network technology without any inherent bottlenecks. Our experiments with the
TPC-C benchmark show that our system scales linearly to over 6.5 million
new-order (14.5 million total) distributed transactions per second on 56
machines.Comment: 12 page
A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures
We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an excellent mechanical stability. The coarse approach system relies on the slip-stick principle and is operated by the same piezotube which is used for scanning. As an example of the performance of the device, images of a NbSe2 surface with atomic resolution are obtained
Atomic Force Microscope
The scanning tunneling microscope is proposed as a method to measure forces as small as 10−18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 ÅA and a vertical resolution less than 1 Å
Surface molecular dynamics simulation with two orthogonal surface steps: how to beat the particle conservation problem
Due to particle conservation, Canonical Molecular Dynamics (MD) simulations
fail in the description of surface phase transitions involving coverage or
lateral density changes. However, a step on the surface can act effectively as
a source or a sink of atoms, in the simulation as well as in real life. A
single surface step can be introduced by suitably modifying planar Periodic
Boundary Conditions (PBC), to accommodate the generally inequivalent stacking
of two adjacent layers. We discuss here how, through the introduction of two
orthogonal surface steps, particle number conservation may no longer represent
a fatal constraint for the study of these surface transitions. As an example,
we apply the method for estimating temperature-induced lateral density increase
of the reconstructed
Au (001) surface; the resulting anisotropic cell change is consistent with
experimental observations. Moreover, we implement this kind of scheme in
conjunction with the variable curvature MD method, recently introduced by our
group.Comment: 9 pages, 5 figures, accepted for publication in Surface Science
(ECOSS-19
Local field distribution near corrugated interfaces: Green's function formulation
We have developed a Green's function formalism to compute the local field
distribution near an interface separating two media of different dielectric
constants. The Maxwell's equations are converted into a surface integral
equation; thus it greatly simplifies the solutions and yields accurate results
for interfaces of arbitrary shape. The integral equation is solved and the
local field distribution is obtained for a periodic interface.Comment: Presented at the Conference on Computational Physics (CCP2000), held
at Gold Coast, Australia from 3 - 8, December 2000. To be published in
Proceedings of CCP200
Reconstructions of Ir (110) and (100): an ab initio study
Prediction criteria for surface reconstructions are discussed, with reference
to ab initio calculations of the (110)- missing-row and
(100)- quasi-hexagonal reconstructions of Ir and Rh.Comment: 3 pages RevTeX two-column, to appear in Surface Scienc
Recurrence Tracking Microscope
In order to probe nanostructures on a surface we present a microscope based
on the quantum recurrence phenomena. A cloud of atoms bounces off an atomic
mirror connected to a cantilever and exhibits quantum recurrences. The times at
which the recurrences occur depend on the initial height of the bouncing atoms
above the atomic mirror, and vary following the structures on the surface under
investigation. The microscope has inherent advantages over existing techniques
of scanning tunneling microscope and atomic force microscope. Presently
available experimental technology makes it possible to develop the device in
the laboratory
- …
