878 research outputs found
Magnetic domain formation in itinerant metamagnets
We examine the effects of long-range dipolar forces on metamagnetic
transitions and generalize the theory of Condon domains to the case of an
itinerant electron system undergoing a first-order metamagnetic transition. We
demonstrate that within a finite range of the applied field, dipolar
interactions induce a spatial modulation of the magnetization in the form of
stripes or bubbles. Our findings are consistent with recent observations in the
bilayer ruthenate SrRuO.Comment: 4 pages, 3 figures, minor changes, references adde
Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals
The tetanus toxin light chain blocks calcium induced vasopressin release from neurohypophysial nerve terminals. Here we show that histidine residue 233 within the putative zinc binding motif of the tetanus toxin light chain is essential for the inhibition of exocytosis, in the rat. The zinc chelating agent dipicolinic acid as well as captopril, an inhibitor of zinc-dependent peptidases, counteract the effect of the neurotoxin. Synthetic peptides, the sequences of which correspond to motifs present in the cytoplasmic domain of the synaptic vesicle membrane protein synaptobrevin 1 and 2, prevent the effect of the tetanus toxin light chain.
Our results indicate that zinc bound to the zinc binding motif constitutes the active site of the tetanus toxin light chain. Moreover they suggest that cleavage of synaptobrevin by the neurotoxin causes the inhibition of exocytotic release of vasopressin from secretory granules
spl(2,1) dynamical supersymmetry and suppression of ferromagnetism in flat band double-exchange models
The low energy spectrum of the ferromagnetic Kondo lattice model on a N-site
complete graph extended with on-site repulsion is obtained from the underlying
spl(2,1) algebra properties in the strong coupling limit. The ferromagnetic
ground state is realized for 1 and N+1 electrons only. We identify the large
density of states to be responsible for the suppression of the ferromagnetic
state and argue that a similar situation is encountered in the Kagome,
pyrochlore, and other lattices with flat bands in their one-particle density of
states.Comment: 7 pages, 1 figur
Van Hove singularity and spontaneous Fermi surface symmetry breaking in Sr3Ru2O7
The most salient features observed around a metamagnetic transition in
Sr3Ru2O7 are well captured in a simple model for spontaneous Fermi surface
symmetry breaking under a magnetic field, without invoking a putative quantum
critical point. The Fermi surface symmetry breaking happens in both a majority
and a minority spin band but with a different magnitude of the order parameter,
when either band is tuned close to van Hove filling by the magnetic field. The
transition is second order for high temperature T and changes into first order
for low T. The first order transition is accompanied by a metamagnetic
transition. The uniform magnetic susceptibility and the specific heat
coefficient show strong T dependence, especially a log T divergence at van Hove
filling. The Fermi surface instability then cuts off such non-Fermi liquid
behavior and gives rise to a cusp in the susceptibility and a specific heat
jump at the transition temperature.Comment: 11 pages, 4 figure
Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries
We describe here the rapid selection of specific MAP-kinase binders from a combinatorial library of designed ankyrin repeat proteins (DARPins). A combined in vitro/in vivo selection approach, based on ribosome display and the protein fragment complementation assay (PCA), yielded a large number of different binders that are fully functional in the cellular cytoplasm. Ribosome-display selection pools of four successive selection rounds were examined to monitor the enrichment of JNK2-specific DARPins. Surprisingly, only one round of ribosome display with subsequent PCA selection of this pool was necessary to isolate a first specific binder with micromolar affinity. After only two rounds of ribosome-display selection followed by PCA, virtually all DARPins showed JNK2-specific binding, with affinities in the low nanomolar range. The enrichment factor of ribosome display thus approaches 105 per round. In a second set of experiments, similar results were obtained with the kinases JNK1 and p38 as targets. Again, almost all investigated DARPins obtained after two rounds of ribosome display showed specific binding to the targets used, JNK1 or p38. In all three selection experiments the identified DARPins possess very high specificity for the target kinase. Taken together, the combination of ribosome display and PCA selections allowed the identification of large pools of binders at unparalleled speed. Furthermore, DARPins are applicable in intracellular selections and immunoprecipitations from the extract of eukaryotic cell
The Reconstruction Problem and Weak Quantum Values
Quantum Mechanical weak values are an interference effect measured by the
cross-Wigner transform W({\phi},{\psi}) of the post-and preselected states,
leading to a complex quasi-distribution {\rho}_{{\phi},{\psi}}(x,p) on phase
space. We show that the knowledge of {\rho}_{{\phi},{\psi}}(z) and of one of
the two functions {\phi},{\psi} unambiguously determines the other, thus
generalizing a recent reconstruction result of Lundeen and his collaborators.Comment: To appear in J.Phys.: Math. Theo
Strong Longitudinal Magnetic Fluctuations near Critical End Point in UCoAl: A ^59Co-NMR Study
We report ^59Co-NMR measurements in UCoAl where a metamagnetism occurs due to
enhancement of ferromagnetism by magnetic field. The metamagnetic transition
from a paramagnetic (PM) state to a ferromagnetic state is a first order
transition at low temperatures, but it changes to a crossover at high
temperatures on crossing the critical end pint (CEP) at T_CEP ~ 12 K. The
contrasting behavior between the relaxation rates 1/T_1 and 1/T_2 suggests that
the longitudinal magnetic fluctuation of U moment is strongly enhanced
especially near the CEP. A wide diffusion of the fluctuation from the CEP can
be confirmed even in the PM state where the magnetic transition does not occur.Comment: 5pages, 6 figures, to be published in J. Phys. Soc. Jp
Classical field theory on Lie algebroids: Variational aspects
The variational formalism for classical field theories is extended to the
setting of Lie algebroids. Given a Lagrangian function we study the problem of
finding critical points of the action functional when we restrict the fields to
be morphisms of Lie algebroids. In addition to the standard case, our formalism
includes as particular examples the case of systems with symmetry (covariant
Euler-Poincare and Lagrange Poincare cases), Sigma models or Chern-Simons
theories.Comment: Talk deliverd at the 9th International Conference on Differential
Geometry and its Applications, Prague, September 2004. References adde
On a partially reduced phase space quantisation of general relativity conformally coupled to a scalar field
The purpose of this paper is twofold: On the one hand, after a thorough
review of the matter free case, we supplement the derivations in our companion
paper on 'loop quantum gravity without the Hamiltonian constraint' with
calculational details and extend the results to standard model matter, a
cosmological constant, and non-compact spatial slices. On the other hand, we
provide a discussion on the role of observables, focussed on the situation of a
symmetry exchange, which is key to our derivation. Furthermore, we comment on
the relation of our model to reduced phase space quantisations based on
deparametrisation.Comment: 51 pages, 5 figures. v2: Gauge condition used shown to coincide with
CMC gauge. Minor clarifications and correction
Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response
Background: Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance.
Methodology/Principal Findings: This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF.
Conclusions: Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value
- …
