8 research outputs found
XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services
Background: Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. Results: We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. Conclusion: XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics
Bluejay 1.0: genome browsing and comparison with rich customization provision and dynamic resource linking
<p>Abstract</p> <p>Background</p> <p>The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses.</p> <p>Results</p> <p>Bluejay 1.0 is a genome viewer integrating genome annotation with: (i) gene expression information; and (ii) comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i) numerous display customization features; (ii) the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii) the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding.</p> <p>Conclusion</p> <p>Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes.</p
e-BioFlow: improving practical use of workflow systems in bioinformatics
Workflow management systems (WfMSs) are useful tools for bioinformaticians. As experiences with using WfMSs accumulate, shortcomings of current systems become apparent. In this paper, we focus on practical issues that hinder WfMS users and that arise in the design and execution of workflows, and in access of web services. We present e-BioFlow, a workflow engine that demonstrates in which way a number of these problems can be solved. e-BioFlow offers an improved user interface, can deal with large data volumes, stores all provenance, and has a powerful provenance browser. e-BioFlow also offers the possibility to design and run workflows step by step, allowing its users an explorative research style
