1,908 research outputs found

    Marmal-aid - a database for Infinium HumanMethylation450

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression

    Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges: Table 1.

    Get PDF
    Living with fire is a challenge for human communities because they are influenced by socio-economic, political, ecological and climatic processes at various spatial and temporal scales. Over the course of 2 days, the authors discussed how communities could live with fire challenges at local, national and transnational scales. Exploiting our diverse, international and interdisciplinary expertise, we outline generalizable properties of fire-adaptive communities in varied settings where cultural knowledge of fire is rich and diverse. At the national scale, we discussed policy and management challenges for countries that have diminishing fire knowledge, but for whom global climate change will bring new fire problems. Finally, we assessed major fire challenges that transcend national political boundaries, including the health burden of smoke plumes and the climate consequences of wildfires. It is clear that to best address the broad range of fire problems, a holistic wildfire scholarship must develop common agreement in working terms and build across disciplines. We must also communicate our understanding of fire and its importance to the media, politicians and the general public. This article is part of the themed issue ‘The interaction of fire and mankind’

    The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers

    Get PDF
    Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics

    Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research

    Get PDF
    Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation

    The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies

    Get PDF
    The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic

    Emergence and Evolution of Cooperation Under Resource Pressure

    Get PDF
    We study the influence that resource availability has on cooperation in the context of hunter-gatherer societies. This paper proposes a model based on archaeological and ethnographic research on resource stress episodes, which exposes three different cooperative regimes according to the relationship between resource availability in the environment and population size. The most interesting regime represents moderate survival stress in which individuals coordinate in an evolutionary way to increase the probabilities of survival and reduce the risk of failing to meet the minimum needs for survival. Populations self-organise in an indirect reciprocity system in which the norm that emerges is to share the part of the resource that is not strictly necessary for survival, thereby collectively lowering the chances of starving. Our findings shed further light on the emergence and evolution of cooperation in hunter-gatherer societies.Spanish Ministry of Science and Innovation Project CSD2010-00034 (SimulPast CONSOLIDER-INGENIO 2010) and HAR2009-06996; from the Argentine National Scientific and Technical Research Council (CONICET): Project PIP-0706; from the Wenner-Gren Foundation for Anthropological Research: Project GR7846; and from the project H2020 FET OPEN RIA IBSEN/66272

    Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett’s Esophagus

    Get PDF
    Background & Aims: Genome-wide association studies (GWAS) have identified more than 20 susceptibility loci for esophageal adenocarcinoma (EA) and Barrett’s esophagus (BE). However, variants in these loci account for a small fraction of cases of EA and BE. Genetic factors might interact with environmental factors to affect risk of EA and BE. We aimed to identify single nucleotide polymorphisms (SNPs) that may modify the associations of body mass index (BMI), smoking, and gastroesophageal reflux disease (GERD), with risks of EA and BE. Methods: We collected data on single BMI measurements, smoking status, and symptoms of GERD from 2284 patients with EA, 3104 patients with BE, and 2182 healthy individuals (controls) participating in the Barrett’s and Esophageal Adenocarcinoma Consortium GWAS, the UK Barrett’s Esophagus Gene Study, and the UK Stomach and Oesophageal Cancer Study. We analyzed 993,501 SNPs in DNA samples of all study subjects. We used standard case–control logistic regression to test for gene-environment interactions. Results: For EA, rs13429103 at chromosome 2p25.1, near the RNF144A-LOC339788 gene, showed a borderline significant interaction with smoking status (P = 2.18×10-7). Ever smoking was associated with an almost 12-fold increase in risk of EA among individuals with rs13429103-AA genotype (odds ratio=11.82; 95% CI, 4.03–34.67). Three SNPs (rs12465911, rs2341926, rs13396805) at chromosome 2q23.3, near the RND3-RBM43 gene, interacted with GERD symptoms (P = 1.70×10-7, P = 1.83×10-7, and P = 3.58×10-7, respectively) to affect risk of EA. For BE, rs491603 at chromosome 1p34.3, near the EIF2C3 gene, and rs11631094 at chromosome 15q14, at the SLC12A6 gene, interacted with BMI (P = 4.44×10-7) and pack-years of smoking history (P = 2.82×10-7), respectively. Conclusion: The associations of BMI, smoking, and GERD symptoms with risks of EA and BE appear to vary with SNPs at chromosomes 1, 2, and 15. Validation of these suggestive interactions is warranted
    corecore