25,194 research outputs found

    Liquid acrobatics

    Full text link
    We experiment with injecting a continuous stream of gas into a shallow liquid, similar to how one might blow into a straw placed at the bottom of a near-empty drink. By varying the angle of the straw (here a metal needle), we observe a variety of dynamics, which we film using a high-speed camera. Most noteworthy is an intermediate regime in which cyclical jets erupt from the air-liquid interface and breakup into air-born droplets. These droplets trace out a parabolic trajectory and bounce on the air-liquid interface before eventually coalescing. The shape of each jet, as well as the time between jets, is remarkably similar and leads to droplets with nearly identical trajectories. The following article accompanies the linked fluid dynamics video submitted to the Gallery of Fluid Motion in 2008.Comment: Accompanies video submission to APS DFD 2008 Gallery of Fluid Motion, low http://ecommons.library.cornell.edu/bitstream/1813/11469/3/Bird_DFD2008_mpeg1.mpg , and high resolution http://ecommons.library.cornell.edu/bitstream/1813/11469/2/Bird_DFD2008_mpeg2.mp

    Flow transitions in two-dimensional foams

    Full text link
    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. {\bf 69}, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear-banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately 10 bubbles. This occurs at an applied rotation rate of approximately 0.07s10.07 {\rm s^{-1}}

    Low level radiation altimeter system study

    Get PDF
    Low level radiation altimeter for measuring altitude 50 feet above lunar surfac

    Fibrational induction rules for initial algebras

    Get PDF
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set

    Diverse perceptions of smart spaces

    No full text
    This is the era of smart technology and of ‘smart’ as a meme, so we have run three workshops to examine the ‘smart’ meme and the exploitation of smart environments. The literature relating to smart spaces focuses primarily on technologies and their capabilities. Our three workshops demonstrated that we require a stronger user focus if we are advantageously to exploit spaces ascribed as smart: we examined the concept of smartness from a variety of perspectives, in collaboration with a broad range of contributors. We have prepared this monograph mainly to report on the third workshop, held at Bournemouth University in April 2012, but do also consider the lessons learned from all three. We conclude with a roadmap for a fourth (and final) workshop, which is intended to emphasise the overarching importance of the humans using the spac

    Is resilience a normative concept?

    Get PDF
    In this paper, we engage with the question of the normative content of the resilience concept. The issues are approached in two consecutive steps. First, we proceed from a narrow construal of the resilience concept – as the ability of a system to absorb a disturbance – and show that under an analysis of normative concepts as evaluative concepts resilience comes out as descriptive. In the second part of the paper, we argue that (1) for systems of interest (primarily social systems or system with a social component) we seem to have options with respect to how they are described and (2) that this matters for what is to be taken as a sign of resilience as opposed to a sign of the lack of resilience for such systems. We discuss the implications of this for how the concept should be applied in practice and suggest that users of the resilience concept face a choice between versions of the concept that are either ontologically or normatively charged
    corecore