466 research outputs found
Low-fi skin vision: A case study in rapid prototyping a sensory substitution system
We describe the design process we have used to develop a minimal, twenty vibration motor Tactile Vision Sensory Substitution (TVSS) system which enables blind-folded subjects to successfully track and bat a rolling ball and thereby experience 'skin vision'. We have employed a low-fi rapid prototyping approach to build this system and argue that this methodology is particularly effective for building embedded interactive systems. We support this argument in two ways. First, by drawing on theoretical insights from robotics, a discipline that also has to deal with the challenge of building complex embedded systems that interact with their environments; second, by using the development of our TVSS as a case study: describing the series of prototypes that led to our successful design and highlighting what we learnt at each stage
Recommended from our members
Towards a real-time system for teaching novices good violin bowing technique
We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time: i) a player’s bowing action (and measure how it deviates from a target trajectory); ii) whether the player is holding their violin correctly. We detail some initial experiments that show that vibrotactile feedback can guide arm movements in one and two dimensions. We then present some preliminary findings from integrating the motion capture and feedback components into a prototype real-time training system. The advantages of vibrotactile feedback are that: i) it does not use the students’ visual and auditory systems which are already involved in the activity of music making; ii) it is an intuitive way to guide body movements
Good vibrations: Guiding body movements with vibrotactile feedback
We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time a player’s bowing action and how it deviates from a target trajectory set by their music teacher. The system provides real-time vibrotactile feedback on the correctness of the student’s posture and bowing action. We present the findings of an initial study that shows that vibrotactile feedback can guide arm movements in one and two dimension pointing tasks. The advantages of vibrotactile feedback for teaching basic bowing technique to novice violin players are that it does not place demands on the students’ visual and auditory systems which are already heavily involved in the activity of music making, and is understood with little training
Running up Blueberry Hill: Prototyping whole body interaction in harmony space
Musical harmony is considered to be one of the most abstract and technically difficult parts of music. It is generally taught formally via abstract, domain-specific concepts, principles, rules and heuristics. By contrast, when harmony is represented using an existing interactive desktop tool, Harmony Space, a new, parsimonious, but equivalently expressive, unified level of description emerges. This focuses not on abstract concepts, but on concrete locations, objects, areas and trajectories. This paper presents a design study of a prototype version of Harmony Space driven by whole body navigation, and characterizes the new opportunities presented for the principled manipulation of chord sequences and bass lines. These include: deeper engagement and directness; rich physical cues for memory and reflection, embodied engagement with rhythmic time constraints; hands which are free for other simultaneous activities (such as playing a traditional instrument); and qualitatively new possibilities for collaborative use
Quasi-Linear Circuit
This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the outpu
Recommended from our members
Electronic data capture in a rural African setting: evaluating experiences with different systems in Malawi
Background
As hardware for electronic data capture (EDC), such as smartphones or tablets, becomes cheaper and more widely available, the potential for using such hardware as data capture tools in routine healthcare and research is increasing.
Objective
We aim to highlight the advantages and disadvantages of four EDC systems being used simultaneously in rural Malawi: two for Android devices (CommCare and ODK Collect), one for PALM and Windows OS (Pendragon), and a custom-built application for Android (Mobile InterVA – MIVA).
Design
We report on the personal field and development experience of fieldworkers, project managers, and EDC system developers.
Results
Fieldworkers preferred using EDC to paper-based systems, although some struggled with the technology at first. Highlighted features include in-built skip patterns for all systems, and specifically the ‘case’ function that CommCare offers. MIVA as a standalone app required considerably more time and expertise than the other systems to create and could not be customised for our specific research needs; however, it facilitates standardised routine data collection. CommCare and ODK Collect both have user-friendly web-interfaces for form development and good technical support. CommCare requires Internet to build an application and download it to a device, whereas all steps can be done offline with ODK Collect, a desirable feature in low connectivity settings. Pendragon required more complex programming of logic, using a Microsoft Access application, and generally had less technical support. Start-up costs varied between systems, and all were considered more expensive than setting up a paper-based system; however running costs were generally low and therefore thought to be cost-effective over the course of our projects.
Conclusions
EDC offers many opportunities for efficient data collection, but brings some issues requiring consideration when designing a study; the decision of which hardware and software to use should be informed by the aim of data collection, budget, and local circumstances
- …
