58 research outputs found
Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study
Background: The main forms of mercury (Hg) exposure in the general population are methylmercury (MeHg) from seafood, inorganic mercury (I-Hg) from food, and mercury vapor (Hg0) from dental amalgam restorations. While the distribution of MeHg in the body is described by a one compartment model, the distribution of I-Hg after exposure to elemental mercury is more complex, and there is no biomarker for I-Hg in the brain. The aim of this study was to elucidate the relationships between on the one hand MeHg and I-Hg in human brain and other tissues, including blood, and on the other Hg exposure via dental amalgam in a fish-eating population. In addition, the use of blood and toenails as biological indicator media for inorganic and organic mercury (MeHg) in the tissues was evaluated. Methods: Samples of blood, brain (occipital lobe cortex), pituitary, thyroid, abdominal muscle and toenails were collected at autopsy of 30 deceased individuals, age from 47 to 91 years of age. Concentrations of total-Hg and I-Hg in blood and brain cortex were determined by cold vapor atomic fluorescence spectrometry and total-Hg in other tissues by sector field inductively coupled plasma-mass spectrometry (ICP-SFMS). Results: The median concentrations of MeHg (total-Hg minus I-Hg) and I-Hg in blood were 2.2 and 1.0 μg/L, and in occipital lobe cortex 4 and 5 μg/kg, respectively. There was a significant correlation between MeHg in blood and occipital cortex. Also, total-Hg in toenails correlated with MeHg in both blood and occipital lobe. I-Hg in both blood and occipital cortex, as well as total-Hg in pituitary and thyroid were strongly associated with the number of dental amalgam surfaces at the time of death. Conclusion: In a fish-eating population, intake of MeHg via the diet has a marked impact on the MeHg concentration in the brain, while exposure to dental amalgam restorations increases the I-Hg concentrations in the brain. Discrimination between mercury species is necessary to evaluate the impact on Hg in the brain of various sources of exposure, in particular, dental amalgam exposure
Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment
BACKGROUND: Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. METHODS: Concentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. RESULTS: About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. CONCLUSION: The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure
Translational genomics of osteoarthritis in 1,962,069 individuals
Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes1. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide2. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed. Here we perform a genome-wide association study meta-analyses across up to 489,975 cases and 1,472,094 controls, establishing 962 independent associations, 513 of which have not been previously reported. Using single-cell multiomics data, we identify signal enrichment in embryonic skeletal development pathways. We integrate orthogonal lines of evidence, including transcriptome, proteome and epigenome profiles of primary joint tissues, and implicate 700 effector genes. Within these, we find rare coding-variant burden associations with effect sizes that are consistently higher than common frequency variant associations. We highlight eight biological processes in which we find convergent involvement of multiple effector genes, including the circadian clock, glial-cell-related processes and pathways with an established role in osteoarthritis (TGFβ, FGF, WNT, BMP and retinoic acid signalling, and extracellular matrix organization). We find that 10% of the effector genes express a protein that is the target of approved drugs, offering repurposing opportunities, which can accelerate translation.Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes1. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide2. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed. Here we perform a genome-wide association study meta-analyses across up to 489,975 cases and 1,472,094 controls, establishing 962 independent associations, 513 of which have not been previously reported. Using single-cell multiomics data, we identify signal enrichment in embryonic skeletal development pathways. We integrate orthogonal lines of evidence, including transcriptome, proteome and epigenome profiles of primary joint tissues, and implicate 700 effector genes. Within these, we find rare coding-variant burden associations with effect sizes that are consistently higher than common frequency variant associations. We highlight eight biological processes in which we find convergent involvement of multiple effector genes, including the circadian clock, glial-cell-related processes and pathways with an established role in osteoarthritis (TGFβ, FGF, WNT, BMP and retinoic acid signalling, and extracellular matrix organization). We find that 10% of the effector genes express a protein that is the target of approved drugs, offering repurposing opportunities, which can accelerate translation
Translational genomics of osteoarthritis in 1,962,069 individuals
Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes 1. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide 2. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed. Here we perform a genome-wide association study meta-analyses across up to 489,975 cases and 1,472,094 controls, establishing 962 independent associations, 513 of which have not been previously reported. Using single-cell multiomics data, we identify signal enrichment in embryonic skeletal development pathways. We integrate orthogonal lines of evidence, including transcriptome, proteome and epigenome profiles of primary joint tissues, and implicate 700 effector genes. Within these, we find rare coding-variant burden associations with effect sizes that are consistently higher than common frequency variant associations. We highlight eight biological processes in which we find convergent involvement of multiple effector genes, including the circadian clock, glial-cell-related processes and pathways with an established role in osteoarthritis (TGFβ, FGF, WNT, BMP and retinoic acid signalling, and extracellular matrix organization). We find that 10% of the effector genes express a protein that is the target of approved drugs, offering repurposing opportunities, which can accelerate translation.</p
Genome-wide association study meta-analysis provides insights into the etiology of heart failure and its subtypes
Heart failure (HF) is a major contributor to global morbidity and mortality. While distinct clinical subtypes, defined by etiology and left ventricular ejection fraction, are well recognized, their genetic determinants remain inadequately understood. In this study, we report a genome-wide association study of HF and its subtypes in a sample of 1.9 million individuals. A total of 153,174 individuals had HF, of whom 44,012 had a nonischemic etiology (ni-HF). A subset of patients with ni-HF were stratified based on left ventricular systolic function, where data were available, identifying 5,406 individuals with reduced ejection fraction and 3,841 with preserved ejection fraction. We identify 66 genetic loci associated with HF and its subtypes, 37 of which have not previously been reported. Using functionally informed gene prioritization methods, we predict effector genes for each identified locus, and map these to etiologic disease clusters through phenome-wide association analysis, network analysis and colocalization. Through heritability enrichment analysis, we highlight the role of extracardiac tissues in disease etiology. We then examine the differential associations of upstream risk factors with HF subtypes using Mendelian randomization. These findings extend our understanding of the mechanisms underlying HF etiology and may inform future approaches to prevention and treatment
Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial
Background Vacc-4x, a Gag p24-based therapeutic HIV vaccine, has been shown to reduce viral load set-points after intradermal administration. In this randomized controlled pilot study we investigate intranasal administration of Vacc-4x with Endocine as adjuvant. Methods Safety and immunogenicity were tested in patients on effective ART. They were randomized to low, medium or high dose Vacc-4x or adjuvant alone, administered four times at weekly intervals with no booster. Vacc-4x-specific T cell responses were measured in vitro by proliferation and in vivo by a single DTH skin test at the end of study. Nasal and rectal mucosal secretions were analyzed for Vacc-4x-specific antibodies by ELISA. Immune regulation induced by Vacc-4x was assessed by functional blockade of the regulatory cytokines IL-10 and TGF-ß. Results Vacc-4x proliferative T cell responses increased only among the vaccinated (p=0.031). The low dose group showed the greatest increase in Vacc-4x CD8+T cell responses (p = 0.037) and developed larger DTH (p = 0.005) than the adjuvant group. Rectal (distal) Vacc-4x IgA and IgG antibodies also increased (p = 0.043) in this group. In contrast, the high dose generated higher nasal (local) Vacc-4x IgA (p = 0.028) and serum IgG (p = 0.030) antibodies than the adjuvant. Irrespective of dose, increased Vacc-4x CD4+T cell responses were associated with low proliferation (r = -0.82, p<0.001) and high regulation (r = 0.61, p = 0.010) at baseline. Conclusion Intranasal administration of Vacc-4x with Endocine was safe and induced dose-dependent vaccine-specific T cell responses and both mucosal and systemic humoral responses. The clinical significance of dose, immune regulation and mucosal immunity warrants further investigation
Deafness after Treatment with Ear Drops Containing Neomycin, Gramicidin and Dexamethasone
<i>Saccharomyces cerevisiae</i> Leukotriene A<sub>4</sub> Hydrolase: Formation of Leukotriene B<sub>4</sub> and Identification of Catalytic Residues
- …
