25 research outputs found
Digitalisierung und Verkehrswende - On-Demand Ridepooling Shuttlesysteme, eine Mobilitätsdienstleistung der Zukunft?
Evidence for the biogenesis of more than 1,000 novel human microRNAs
Background: MicroRNAs (miRNAs) are established regulators of development, cell identity and disease. Although nearly two thousand human miRNA genes are known and new ones are continuously discovered, no attempt has been made to gauge the total miRNA content of the human genome. Results: Employing an innovative computational method on massively pooled small RNA sequencing data, we report 2,469 novel human miRNA candidates of which 1,098 are validated by in-house and published experiments. Almost 300 candidates are robustly expressed in a neuronal cell system and are regulated during differentiation or when biogenesis factors Dicer, Drosha, DGCR8 or Ago2 are silenced. To improve expression profiling, we devised a quantitative miRNA capture system. In a kidney cell system, 400 candidates interact with DGCR8 at transcript positions that suggest miRNA hairpin recognition, and 1,000 of the new miRNA candidates interact with Ago1 or Ago2, indicating that they are directly bound by miRNA effector proteins. From kidney cell CLASH experiments, in which miRNA-target pairs are ligated and sequenced, we observe hundreds of interactions between novel miRNAs and mRNA targets. The novel miRNA candidates are specifically but lowly expressed, raising the possibility that not all may be functional. Interestingly, the majority are evolutionarily young and overrepresented in the human brain. Conclusions: In summary, we present evidence that the complement of human miRNA genes is substantially larger than anticipated, and that more are likely to be discovered in the future as more tissues and experimental conditions are sequenced to greater depth.This project was funded by the Spanish Plan Nacional SAF2008-00357 (NOVADIS); the Generalitat de Catalunya AGAUR 2009 SGR-1502; the Instituto de Salud Carlos III (FIS/FEDER PI11/00733); National Institutes of Health (R00HG004515 to KCC) and the European Commission 7th Framework Program, Projects N. 03790 (SIROCCO), N. 282510 (BLUEPRINT), N. 261123 (GEUVADIS) and N. 262055 (ESGI). MRF is supported by EMBO Long-Term fellowship ALTF 225–2011; EL is supported by the ICGC CLL-Genome project funded by the Spanish Ministry of Economy and Competiveness through the Instituto de Salud Carlos III. AJSH is a Marie Curie postdoctoral fellow supported by the European Commission 7th Framework Program under grant agreement N. 330133. MB-C is a Sara Borrell postdoctoral fellow supported by the Spanish Ministry of Economy and Competiveness. GK was supported by the Wellcome Trust Grant 097383 and by the MRC. EM–H is a PhD student from LaCaix
Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells
<p>Abstract</p> <p>Background</p> <p>Neurotrophins and their receptors are key molecules in the regulation of neuronal differentiation and survival. They mediate the survival of neurons during development and adulthood and are implicated in synaptic plasticity. The human neurotrophin-3 receptor gene <it>NTRK3 </it>yields two major isoforms, a full-length kinase-active form and a truncated non-catalytic form, which activates a specific pathway affecting membrane remodeling and cytoskeletal reorganization. The two variants present non-overlapping 3'UTRs, indicating that they might be differentially regulated at the post-transcriptional level. Here, we provide evidence that the two isoforms of <it>NTRK3 </it>are targeted by different sets of microRNAs, small non-coding RNAs that play an important regulatory role in the nervous system.</p> <p>Results</p> <p>We identify one microRNA (miR-151-3p) that represses the full-length isoform of <it>NTRK3 </it>and four microRNAs (miR-128, miR-485-3p, miR-765 and miR-768-5p) that repress the truncated isoform. In particular, we show that the overexpression of miR-128 - a brain enriched miRNA - causes morphological changes in SH-SY5Y neuroblastoma cells similar to those observed using an siRNA specifically directed against truncated <it>NTRK3</it>, as well as a significant increase in cell number. Accordingly, transcriptome analysis of cells transfected with miR-128 revealed an alteration of the expression of genes implicated in cytoskeletal organization as well as genes involved in apoptosis, cell survival and proliferation, including the anti-apoptotic factor <it>BCL2</it>.</p> <p>Conclusions</p> <p>Our results show that the regulation of <it>NTRK3 </it>by microRNAs is isoform-specific and suggest that neurotrophin-mediated processes are strongly linked to microRNA-dependent mechanisms. In addition, these findings open new perspectives for the study of the physiological role of miR-128 and its possible involvement in cell death/survival processes.</p
A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches
Differential methylation pattern of the X-linked lymphoproliferative (XLP) disease gene SH2D1A correlates with the cell lineage-specific transcription
Differential methylation pattern of the X-linked lymphoproliferative (XLP) disease gene SH2D1A correlates with the cell lineage-specific transcription
SH2D1A, the X-linked lymphoproliferative disease (XLP) gene, encodes a cytoplasmic protein that plays an essential role in controlling Epstein-Barr virus infection. It is expressed in T and NK cells, but not in B cells or in granulocytes. The promoter, the regulatory regions, as well as the mechanisms controlling its tissue-specific expression, are still unknown. We tested the hypothesis that DNA methylation might contribute to tissue-specific SH2D1A gene expression and analyzed the methylation status of 2,300 bp upstream of the ATG starting codon, the coding region and part of intron 1. By bisulfite sequencing and methylation-sensitive restriction enzyme digestion, we show that a differential methylation pattern of CpG-rich regions in the 5' region and the adjacent exon 1 of the SH2D1A gene indeed correlates with the tissue-specific gene transcription
Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia
A pathogenic mechanism in Huntington"s disease involves small CAG-repeated RNAs with neurotoxic activity
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approache
