7,403 research outputs found
Cavity QED with Multiple Hyperfine Levels
We calculate the weak-driving transmission of a linearly polarized cavity
mode strongly coupled to the D2 transition of a single Cesium atom. Results are
relevant to future experiments with microtoroid cavities, where the
single-photon Rabi frequency g exceeds the excited-state hyperfine splittings,
and photonic bandgap resonators, where g is greater than both the excited- and
ground-state splitting.Comment: 6 pages, 10 figure
Low threshold CW Nc laser oscillator at 1060 nm study
A broad range of characteristics of neodymium/yag lasers were investigated. With Nd:YVO4 crystals, CW 1.06 mu lasers were operated with thresholds a factor of 2 lower than Nd:YAG and with greater slope efficiencies. Thus, the first step in the development of new oscillators suitable for application in high data rate laser communication systems which surpass the present performance of the Nd:YAG laser has been successfully demonstrated
On Approaching the Ultimate Limits of Photon-Efficient and Bandwidth-Efficient Optical Communication
It is well known that ideal free-space optical communication at the quantum
limit can have unbounded photon information efficiency (PIE), measured in bits
per photon. High PIE comes at a price of low dimensional information efficiency
(DIE), measured in bits per spatio-temporal-polarization mode. If only temporal
modes are used, then DIE translates directly to bandwidth efficiency. In this
paper, the DIE vs. PIE tradeoffs for known modulations and receiver structures
are compared to the ultimate quantum limit, and analytic approximations are
found in the limit of high PIE. This analysis shows that known structures fall
short of the maximum attainable DIE by a factor that increases linearly with
PIE for high PIE.
The capacity of the Dolinar receiver is derived for binary coherent-state
modulations and computed for the case of on-off keying (OOK). The DIE vs. PIE
tradeoff for this case is improved only slightly compared to OOK with photon
counting. An adaptive rule is derived for an additive local oscillator that
maximizes the mutual information between a receiver and a transmitter that
selects from a set of coherent states. For binary phase-shift keying (BPSK),
this is shown to be equivalent to the operation of the Dolinar receiver.
The Dolinar receiver is extended to make adaptive measurements on a coded
sequence of coherent state symbols. Information from previous measurements is
used to adjust the a priori probabilities of the next symbols. The adaptive
Dolinar receiver does not improve the DIE vs. PIE tradeoff compared to
independent transmission and Dolinar reception of each symbol.Comment: 10 pages, 8 figures; corrected a typo in equation 3
Trapped atoms in cavity QED: coupling quantized light and matter
On the occasion of the hundredth anniversary of Albert Einstein's annus mirabilis, we reflect on the development and current state of research in cavity quantum electrodynamics in the optical domain. Cavity QED is a field which undeniably traces its origins to Einstein's seminal work on the statistical theory of light and the nature of its quantized interaction with matter. In this paper, we emphasize the development of techniques for the confinement of atoms strongly coupled to high-finesse resonators and the experiments which these techniques enable
Minimax bounds for sparse PCA with noisy high-dimensional data
We study the problem of estimating the leading eigenvectors of a
high-dimensional population covariance matrix based on independent Gaussian
observations. We establish a lower bound on the minimax risk of estimators
under the loss, in the joint limit as dimension and sample size increase
to infinity, under various models of sparsity for the population eigenvectors.
The lower bound on the risk points to the existence of different regimes of
sparsity of the eigenvectors. We also propose a new method for estimating the
eigenvectors by a two-stage coordinate selection scheme.Comment: 1 figur
Cavity QED with Single Atoms and Photons
Recent experimental advances in the field of cavity quantum electrodynamics (QED) have opened new possibilities for control of atom-photon interactions. A laser with "one and the same atom" demonstrates the theory of laser operation pressed to its conceptual limit. The generation of single photons on demand and the realization of cavity QED with well defined atomic numbers N = 0, 1, 2,... both represent important steps toward realizing diverse protocols in quantum information science. Coherent manipulation of the atomic state via Raman transitions provides a new tool in cavity QED for in situ monitoring and control of the atom-cavity system. All of these achievements share a common point of departure: the regime of strong coupling. It is thus interesting to consider briefly the history of the strong coupling criterion in cavity QED and to trace out the path that research has taken in the pursuit of this goal
Observation of the Vacuum-Rabi Spectrum for One Trapped Atom
The transmission spectrum for one atom strongly coupled to the field of a
high-finesse optical resonator is observed to exhibit a clearly resolved
vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue
spectrum of the atom-cavity system. A new Raman scheme for cooling atomic
motion along the cavity axis enables a complete spectrum to be recorded for an
individual atom trapped within the cavity mode, in contrast to all previous
measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure
A Counts-in-Cells Analysis of Lyman-break Galaxies at z~3
We have measured the counts-in-cells fluctuations of 268 Lyman-break galaxies
with spectroscopic redshifts in six 9 arcmin by 9 arcmin fields at z~3. The
variance of galaxy counts in cubes of comoving side length 7.7, 11.9, 11.4
h^{-1} Mpc is \sigma_{gal}^2 ~ 1.3\pm0.4 for \Omega_M=1, 0.2 open, 0.3 flat,
implying a bias on these scales of \sigma_{gal} / \sigma_{mass} = 6.0\pm1.1,
1.9\pm0.4, 4.0\pm0.7. The bias and abundance of Lyman-break galaxies are
surprisingly consistent with a simple model of structure formation which
assumes only that galaxies form within dark matter halos, that Lyman-break
galaxies' rest-UV luminosities are tightly correlated with their dark masses,
and that matter fluctuations are Gaussian and have a linear power-spectrum
shape at z~3 similar to that determined locally (\Gamma~0.2). This conclusion
is largely independent of cosmology or spectral normalization \sigma_8. A
measurement of the masses of Lyman-break galaxies would in principle
distinguish between different cosmological scenarios.Comment: Accepted for publication in ApJ, 16 pages including 4 figure
- …
