33 research outputs found
Carotid Body AT4 Receptor Expression and its Upregulation in Chronic Hypoxia
Hypoxia regulates the local expression of angiotensin-generating system in the rat carotid body and the me-tabolite angiotensin IV (Ang IV) may be involved in the modulation of carotid body function. We tested the hypothesis that Ang IV-binding angiotensin AT4 receptors play a role in the adaptive change of the carotid body in hypoxia. The expression and localization of Ang IV-binding sites and AT4 receptors in the rat carotid bodies were studied with histochemistry. Specific fluorescein-labeled Ang IV binding sites and positive staining of AT4 immunoreactivity were mainly found in lobules in the carotid body. Double-labeling study showed the AT4 receptor was localized in glomus cells containing tyrosine hydroxylase, suggesting the expression in the chemosensitive cells. Intriguingly, the Ang IV-binding and AT4 immunoreactivity were more intense in the carotid body of chronically hypoxic (CH) rats (breathing 10% oxygen for 4 weeks) than the normoxic (Nx) control. Also, the protein level of AT4 receptor was doubled in the CH comparing with the Nx group, supporting an upregulation of the expression in hypoxia. To examine if Ang IV induces intracellular Ca2+ response in the carotid body, cytosolic calcium ([Ca2+]i) was measured by spectrofluorimetry in fura-2-loaded glomus cells dissociated from CH and Nx carotid bodies. Exogenous Ang IV elevated [Ca2+]i in the glomus cells and the Ang IV response was significantly greater in the CH than the Nx group. Hence, hypoxia induces an upregulation of the expression of AT4 receptors in the glomus cells of the carotid body with an increase in the Ang IV-induced [Ca2+]i elevation. This may be an additional pathway enhancing the Ang II action for the activation of chemoreflex in the hypoxic response during chronic hypoxia
Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program
BACKGROUND: Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1(R)) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R) mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention
Human resources for health policies: a critical component in health policies
In the last few years, increasing attention has been paid to the development of health policies. But side by side with the presumed benefits of policy, many analysts share the opinion that a major drawback of health policies is their failure to make room for issues of human resources. Current approaches in human resources suggest a number of weaknesses: a reactive, ad hoc attitude towards problems of human resources; dispersal of accountability within human resources management (HRM); a limited notion of personnel administration that fails to encompass all aspects of HRM; and finally the short-term perspective of HRM. There are three broad arguments for modernizing the ways in which human resources for health are managed: • the central role of the workforce in the health sector; • the various challenges thrown up by health system reforms; • the need to anticipate the effect on the health workforce (and consequently on service provision) arising from various macroscopic social trends impinging on health systems. The absence of appropriate human resources policies is responsible, in many countries, for a chronic imbalance with multifaceted effects on the health workforce: quantitative mismatch, qualitative disparity, unequal distribution and a lack of coordination between HRM actions and health policy needs. Four proposals have been put forward to modernize how the policy process is conducted in the development of human resources for health (HRH): • to move beyond the traditional approach of personnel administration to a more global concept of HRM; • to give more weight to the integrated, interdependent and systemic nature of the different components of HRM when preparing and implementing policy; • to foster a more proactive attitude among human resources (HR) policy-makers and managers; • to promote the full commitment of all professionals and sectors in all phases of the process. The development of explicit human resources policies is a crucial link in health policies and is needed both to address the imbalances of the health workforce and to foster implementation of the health services reforms
The effect of potassium concentration on glycolysis and pyruvate kinase in high potassium and low potassium possum erythrocytes
Experiments with Kainate and Quisqualate Agonists and Antagonists in Relation to the Sub-Classification of ‘Non-NMDA’ Receptors
Age structure changes and extraordinary lifespan in wild medfly populations
The main purpose of this study was to test the hypotheses that major changes in age structure occur in wild populations of the Mediterranean fruit fly (medfly) and that a substantial fraction of individuals survive to middle age and beyond (> 3-4 weeks). We thus brought reference life tables and deconvolution models to bear on medfly mortality data gathered from a 3-year study of field-captured individuals that were monitored in the laboratory. The average time-to-death of captured females differed between sampling dates by 23.9, 22.7, and 37.0 days in the 2003, 2004, and 2005 field seasons, respectively. These shifts in average times-to-death provided evidence of changes in population age structure. Estimates indicated that middle-aged medflies (> 30 days) were common in the population. A surprise in the study was the extraordinary longevity observed in field-captured medflies. For example, 19 captured females but no reference females survived in the laboratory for 140 days or more, and 6 captured but no reference males survived in the laboratory for 170 days or more. This paper advances the study of aging in the wild by introducing a new method for estimating age structure in insect populations, demonstrating that major changes in age structure occur in field populations of insects, showing that middle-aged individuals are common in the wild, and revealing the extraordinary lifespans of wild-caught individuals due to their early life experience in the field. © 2008 The Authors Journal compilation © 2008 Blackwell Publishing Ltd/The Anatomical Society of Great Britain and Ireland
