41 research outputs found

    A new approach in classical electrodynamics to protect principle of causality

    Get PDF
    In classical electrodynamics, electromagnetic effects are calculated from solution of wave equation formed by combination of four Maxwell’s equations. However, along with retarded solution, this wave equation admits advanced solution in which case the effect happens before the cause. So, to preserve causality in natural events, the retarded solution is intentionally chosen and the advance part is just ignored. But, an equation or method cannot be called fundamental if it admits a wrong result (that violates principle of causality) in addition to the correct result. Since it is the Maxwell’s form of equations that gives birth to this acausal advanced potential, we rewrite these equations in a different form using the recent theory of reaction at a distance (Biswaranjan Dikshit, Physics essays, 24(1), 4-9, 2011) so that the process of calculation does not generate any advanced effects. Thus, the long-standing causality problem in electrodynamics is solved

    Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology

    Get PDF
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed to quantitatively explain the quantum mechanical results. In this paper, we take the clue from quantum biology to get the explanation of quantum mechanical distribution. Recently it was reported that mutations (which are quantum processes) in DNA of E. coli bacteria instead of being random were biased in a direction such that the chance of survival of the bacteria is increased. Extrapolating it, we assume that all the particles including inanimate fundamental particles have a will and that is biased to satisfy the collective goals of the ensemble. Using this postulate, we mathematically derive the correct spin probability distribution without using quantum mechanical formalism (operators and Born’s rule) and exactly reproduce the quantum mechanical spin correlation in entangled pairs. Using our concept, we also mathematically derive the form of quantum mechanical wave function of free particle which is conventionally a postulate of quantum mechanics. Thus, we prove that the origin of quantum mechanical results lies in the will (or consciousness) of the objects biased by the collective goal of ensemble or universe. This biasing by the group on individuals can be called as “coherence” which directly represents the extent of life present in the ensemble. So, we can say that life originates out of establishment of coherence in a group of inanimate particles

    A simple proof of Born’s rule for statistical interpretation of quantum mechanics

    Get PDF
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some researchers have carried out experiments to validate the rule up-to maximum possible accuracy using multi-order interference (Sinha et al, Science, 329, 418 [2010]). But, a convincing analytical proof of Born’s rule will make us understand the basic process responsible for exact square dependency of probability on wave function. In this paper, by generalizing the method of calculating probability in common experience into quantum mechanics, we prove the Born’s rule for statistical interpretation of wave function

    Reformulation of Dirac’s theory of electron to avoid negative energy or negative time solution

    Get PDF
    Dirac’s relativistic theory of electron generally results in two possible solutions, one with positive energy and other with negative energy. Although positive energy solutions accurately represented particles such as electrons, interpretation of negative energy solution became very much controversial in the last century. By assuming the vacuum to be completely filled with a sea of negative energy electrons, Dirac tried to avoid natural transition of electron from positive to negative energy state using Pauli’s exclusion principle. However, many scientists like Bohr objected to the idea of sea of electrons as it indicates infinite density of charge and electric field and consequently infinite energy. In addition, till date, there is no experimental evidence of a particle whose total energy (kinetic plus rest) is negative. In an alternative approach, Feynman, in quantum field theory, proposed that particles with negative energy are actually positive energy particles running backwards in time. This was mathematically consistent since quantum mechanical energy operator contains time in denominator and the negative sign of energy can be absorbed in it. However, concept of negative time is logically inconsistent since in this case, effect happens before the cause. To avoid above contradictions, in this paper, we try to reformulate the Dirac’s theory of electron so that neither energy needs to be negative nor the time is required to be negative. Still, in this new formulation, two different possible solutions exist for particles and antiparticles (electrons and positrons)

    Derivation of gravitational time dilation from principle of equivalence and special relativity

    Get PDF
    General relativity is the exact theory of gravity which has been experimentally found to be correct with extremely high accuracy. One of the most surprising predictions of the general theory is that time runs slow in a gravitational field. Its proof formally comes from Schwarzschild metric which is a solution of Einstein field equation for a spherically symmetric mass. However, as Einstein field equation is too complex, attempts have been made earlier to derive gravitational time dilation by direct use of principle of equivalence and special theory of relativity. But, this objective has been accomplished partially till date as the resulting expression agrees with the exact expression only upto first order. In this paper, by using principle of equivalence and special relativity, we present a thought experiment which helps us to derive an expression that exactly matches with the expression for gravitational time delay

    A simple proof of Born’s rule for statistical interpretation of quantum mechanics

    Get PDF
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some researchers have carried out experiments to validate the rule up-to maximum possible accuracy using multi-order interference (Sinha et al, Science, 329, 418 [2010]). But, a convincing analytical proof of Born’s rule will make us understand the basic process responsible for exact square dependency of probability on wave function. In this paper, by generalizing the method of calculating probability in common experience into quantum mechanics, we prove the Born’s rule for statistical interpretation of wave function

    A model for the solution of the quantum measurement problem

    Get PDF
    The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities (or eigen states). This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property (say position), the system instantaneously transforms to one of the eigen states and thus we get only a single value as outcome of the measurement. Quantum measurement problem seeks to find the cause and exact mechanism governing this transformation. In an attempt to solve the above problem, in this paper, we will first define what the wave function represents in real world and will identify the root cause behind the stochastic nature of events. Then, we will develop a model to explain the mechanism of collapse of the quantum mechanical wave function in response to a measurement. In the process of development of model, we will explain Schrodinger cat paradox and will show how Born’s rule for probability becomes a natural consequence of measurement process

    Ideal distortion-less bending of a focused non-paraxial electron beam

    Get PDF
    a b s t r a c t In specific applications, where electron beam is required to be bent after passing through the focusing optics, the beam spot on the target is distorted due to asymmetry introduced by the bending. For complete elimination of the above distortion, a circularly asymmetric initial velocity distribution of electrons that move in a radially decreasing magnetic field (i.e. index of field gradient ¼ 1) is proposed. The expression is quantitatively exact for beams with any angle of bending even when paraxial condition is not satisfied i.e. beam cross-sectional diameter is comparable with the radius of curvature of bending. Modified expression for the case, when kinetic energy of the electrons increases due to timevarying field during its motion through the bending magnetic field is also given as a result of which complexity of the magnetic field design (for strong focusing) can be avoided. Finally, a numerical model of electron gun is utilized to compare the results of proposed model
    corecore