635 research outputs found

    Selective functionalization of carbon nanotube tips allowing fabrication of new classes of nanoscale sensing and manipulation tools

    Get PDF
    Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes ''nanowired'' to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction

    Organizing to counter terrorism: sensemaking amidst dynamic complexity

    Get PDF
    publication-status: Acceptedtypes: ArticlePre-print draft (version 1). ‘The final, definitive version of this paper has been published in Human Relations September 2013 66(9): 1201–1223, by SAGE Publications Ltd, All rights reserved. © [The Author]Organizations increasingly find themselves contending with circumstances that are suffused with dynamic complexity. So how do they make sense of and contend with this? Using a sensemaking approach, our empirical case analysis of the shooting of Mr Jean Charles de Menezes shows how sensemaking is tested under such conditions. Through elaborating the relationship between the concepts of frames and cues, we find that the introduction of a new organizational routine to anticipate action in changing circumstances leads to discrepant sensemaking. This reveals how novel routines do not necessarily replace extant ones but instead, overlay each other and give rise to novel, dissonant identities which in turn can lead to an increase in equivocality rather than a reduction. This has important implications for sensemaking and organizing amidst unprecedented circumstances

    Gene expression profiling identifies distinct molecular subgroups of leiomyosarcoma with clinical relevance

    Get PDF
    YesBackground: Soft tissue sarcomas are heterogeneous and a major complication in their management is that the existing classification scheme is not definitive and is still evolving. Leiomyosarcomas, a major histologic category of soft tissue sarcomas, are malignant tumours displaying smooth muscle differentiation. Although defined as a single group, they exhibit a wide range of clinical behaviour. We aimed to carry out molecular classification to identify new molecular subgroups with clinical relevance. Methods: We used gene expression profiling on 20 extra-uterine leiomyosarcomas and cross-study analyses for molecular classification of leiomyosarcomas. Clinical significance of the subgroupings was investigated. Results: We have identified two distinct molecular subgroups of leiomyosarcomas. One group was characterised by high expression of 26 genes that included many genes from the sub-classification gene cluster proposed by Nielsen et al. These sub-classification genes include genes that have importance structurally, as well as in cell signalling. Notably, we found a statistically significant association of the subgroupings with tumour grade. Further refinement led to a group of 15 genes that could recapitulate the tumour subgroupings in our data set and in a second independent sarcoma set. Remarkably, cross-study analyses suggested that these molecular subgroups could be found in four independent data sets, providing strong support for their existence. Conclusions: Our study strongly supported the existence of distinct leiomyosarcoma molecular subgroups, which have clinical association with tumour grade. Our findings will aid in advancing the classification of leiomyosarcomas and lead to more individualised and better management of the disease.Alexander Boag Sarcoma Fund

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment

    Get PDF
    Context Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown. Objectives To 1) review the evidence for the pupil light reflex being a sensitive method to evaluate parasympathetic dysfunction, 2) review the evidence relating hearing impairment and parasympathetic activity and 3) seek evidence of possible connections between hearing impairment and the pupil light reflex. Methods Literature searches were performed in five electronic databases. All selected articles were categorized into three sections: pupil light reflex and parasympathetic dysfunction, hearing impairment and parasympathetic activity, pupil light reflex and hearing impairment. Results Thirty-eight articles were included in this review. Among them, 36 articles addressed the pupil light reflex and parasympathetic dysfunction. We summarized the information in these data according to different types of parasympathetic-related diseases. Most of the studies showed a difference on at least one pupil light reflex parameter between patients and healthy controls. Two articles discussed the relationship between hearing impairment and parasympathetic activity. Both studies reported a reduced parasympathetic activity in the hearing impaired groups. The searches identified no results for pupil light reflex and hearing impairment. Discussion and Conclusions As the first systematic review of the evidence, our findings suggest that the pupil light reflex is a sensitive tool to assess the presence of parasympathetic dysfunction. Maximum constriction velocity and relative constriction amplitude appear to be the most sensitive parameters. There are only two studies investigating the relationship between parasympathetic activity and hearing impairment, hence further research is needed. The pupil light reflex could be a candidate measurement tool to achieve this goal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Torsional Force Microscopy of Van der Waals Moir\'es and Atomic Lattices

    Full text link
    In a stack of atomically-thin Van der Waals layers, introducing interlayer twist creates a moir\'e superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult, hence determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moir\'e, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that Torsional Force Microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of Van der Waals stacks on multiple length scales: the moir\'es formed between bilayers of graphene and between graphene and hexagonal boron nitride (hBN), and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an AFM cantilever is monitored as the it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the surface of a sample. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moir\'e superlattices and crystallographic orientation of VdW flakes to support predictable moir\'e heterostructure fabrication.Comment: 28 pages, 14 figures including supplementary material

    Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends

    Get PDF
    Despite performance improvements of organic photovoltaics, the mechanism of photoinduced electron-hole separation at organic donor-acceptor interfaces remains poorly understood. Inconclusive experimental and theoretical results have produced contradictory models for electron-hole separation in which the role of interfacial charge-transfer (CT) states is unclear, with one model identifying them as limiting separation and another as readily dissociating. Here, polymer-fullerene blends with contrasting photocurrent properties and enthalpic offsets driving separation were studied. By modifying composition, film structures were varied from consisting of molecularly mixed polymer-fullerene domains to consisting of both molecularly mixed and fullerene domains. Transient absorption spectroscopy revealed that CT state dissociation generating separated electron-hole pairs is only efficient in the high energy offset blend with fullerene domains. In all other blends (with low offset or predominantly molecularly mixed domains), nanosecond geminate electron-hole recombination is observed revealing the importance of spatially localized electron-hole pairs (bound CT states) in the electron-hole dynamics. A two-dimensional lattice exciton model was used to simulate the excited state spectrum of a model system as a function of microstructure and energy offset. The results could reproduce the main features of experimental electroluminescence spectra indicating that electron-hole pairs become less bound and more spatially separated upon increasing energy offset and fullerene domain density. Differences between electroluminescence and photoluminescence spectra could be explained by CT photoluminescence being dominated by more-bound states, reflecting geminate recombination processes, while CT electroluminescence preferentially probes less-bound CT states that escape geminate recombination. These results suggest that apparently contradictory studies on electron-hole separation can be explained by the presence of both bound and unbound CT states in the same film, as a result of a range of interface structures

    Coronary artery bypass surgery in high-risk patients

    Get PDF
    BACKGROUND: In high-risk coronary artery bypass patients; off-pump versus on-pump surgical strategies still remain a matter of debate, regarding which method results in a lower incidence of perioperative mortality and morbidity. We describe our experience in the treatment of high-risk coronary artery patients and compare patients assigned to on-pump and off-pump surgery. METHODS: From March 2002 to July 2004, 86 patients with EuroSCOREs > 5 underwent myocardial revascularization with or without cardiopulmonary bypass. Patients were assigned to off-pump surgery (40) or on-pump surgery (46) based on coronary anatomy coupled with the likelihood of achieving complete revascularization. RESULTS: Those patients undergoing off-pump surgery had significantly poorer left ventricular function than those undergoing on-pump surgery (28.6 ± 5.8% vs. 40.5 ± 7.4%, respectively, p < 0.05) and also had higher Euroscore values (7.26 ± 1.4 vs. 12.1 ± 1.8, respectively, p < 0.05). Differences between the two groups were nonsignificant with regard to number of grafts per patient, mean duration of surgery, anesthesia and operating room time, length of stay intensive care unit (ICU) and rate of postoperative atrial fibrillation CONCLUSION: Utilization of off-pump coronary artery bypass graft (CABG) does not confer significant clinical advantages in all high-risk patients. This review suggest that off-pump coronary revascularization may represent an alternative approach for treatment of patients with Euroscore ≥ 10 and left ventricular function ≤ 30%

    Additive scales in degenerative disease - calculation of effect sizes and clinical judgment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The therapeutic efficacy of an intervention is often assessed in clinical trials by scales measuring multiple diverse activities that are added to produce a cumulative global score. Medical communities and health care systems subsequently use these data to calculate pooled effect sizes to compare treatments. This is done because major doubt has been cast over the clinical relevance of statistically significant findings relying on <it>p </it>values with the potential to report chance findings. Hence in an aim to overcome this pooling the results of clinical studies into a meta-analyses with a statistical calculus has been assumed to be a more definitive way of deciding of efficacy.</p> <p>Methods</p> <p>We simulate the therapeutic effects as measured with additive scales in patient cohorts with different disease severity and assess the limitations of an effect size calculation of additive scales which are proven mathematically.</p> <p>Results</p> <p>We demonstrate that the major problem, which cannot be overcome by current numerical methods, is the complex nature and neurobiological foundation of clinical psychiatric endpoints in particular and additive scales in general. This is particularly relevant for endpoints used in dementia research. 'Cognition' is composed of functions such as memory, attention, orientation and many more. These individual functions decline in varied and non-linear ways. Here we demonstrate that with progressive diseases cumulative values from multidimensional scales are subject to distortion by the limitations of the additive scale. The non-linearity of the decline of function impedes the calculation of effect sizes based on cumulative values from these multidimensional scales.</p> <p>Conclusions</p> <p>Statistical analysis needs to be guided by boundaries of the biological condition. Alternatively, we suggest a different approach avoiding the error imposed by over-analysis of cumulative global scores from additive scales.</p
    corecore